Abstract

Paradoxically, slow light promises to increase the speed of telecommunications in novel photonic structures, such as coupled resonators [1] and photonic crystals [2,3]. Apart from signal delays, the key consequence of slowing light down is the enhancement of light-matter interactions. Linear effects such as refractive index modulation scale linearly with slowdown in photonic crystals [3], and nonlinear effects are expected to scale with its square [4]. By directly observing the spatial compression of an optical pulse, by factor 25, we confirm the mechanism underlying this square scaling law. The key advantage of photonic structures over other slow light concepts is the potentially large bandwidth, which is crucial for telecommunications [5]. Nevertheless, the slow light previously observed in photonic crystals [2,3,6,7] has been very dispersive and featured narrow bandwidth. We demonstrate slow light with a bandwidth of 2.5 THz and a delay-bandwidth product of 30, which is an order of magnitude larger than any reported so far.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide

Daisuke Mori and Toshihiko Baba
Opt. Express 13(23) 9398-9408 (2005)

Photonic crystal waveguides with semi-slow light and tailored dispersion properties

Lars H. Frandsen, Andrei V. Lavrinenko, Jacob Fage-Pedersen, and Peter I. Borel
Opt. Express 14(20) 9444-9450 (2006)

Coupled photonic crystal heterostructure nanocavities

D. O’Brien, M.D. Settle, T. Karle, A. Michaeli, M. Salib, and T.F. Krauss
Opt. Express 15(3) 1228-1233 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35,365–379 (2003).
    [Crossref]
  2. H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
    [Crossref] [PubMed]
  3. Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438,65–69 (2005).
    [Crossref] [PubMed]
  4. M. Soljacic and J.D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Materials 3,211–219 (2004).
    [Crossref] [PubMed]
  5. J.B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22,1062–1074 (2005).
    [Crossref]
  6. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87,253902 (2001).
    [Crossref] [PubMed]
  7. R.J.P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14,1658–1672 (2006).
    [Crossref] [PubMed]
  8. M. Settle, M. Salib, A. Michaeli, and T.F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography,” Opt. Express 14,2440–2245 (2006).
    [Crossref] [PubMed]
  9. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave,” Opt. Express 8,173–190, (2001).
    [Crossref] [PubMed]
  10. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12,1551–1561, 2004.
    [Crossref] [PubMed]
  11. A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85,4866–4868, (2004).
    [Crossref]
  12. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14,9444–9450 (2006).
    [Crossref] [PubMed]
  13. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294,1080–1082 (2001).
    [Crossref] [PubMed]
  14. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
    [Crossref] [PubMed]
  15. M. Miyagi and S. Nishida, “Pulse spreading in a single-mode fiber due to 3rd-order dispersion,” Appl. Opt. 18,678–682, (1979).
    [Crossref] [PubMed]
  16. S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94,033903, (2005).
    [Crossref] [PubMed]
  17. A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, “EIT: Propagation dynamics,” Phys. Rev. Lett. 74,2447–2450, (1995).
    [Crossref] [PubMed]
  18. P. C. Ku, F. Sedgwich, C. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S.L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29,2291–2293, (2004).
    [Crossref] [PubMed]
  19. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13,6092–6098, (2005).
    [Crossref] [PubMed]
  20. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66,066608, (2002).
    [Crossref]
  21. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31,50–52 (2006).
    [Crossref] [PubMed]

2006 (4)

2005 (6)

J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13,6092–6098, (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94,033903, (2005).
[Crossref] [PubMed]

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438,65–69 (2005).
[Crossref] [PubMed]

J.B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22,1062–1074 (2005).
[Crossref]

2004 (4)

2003 (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35,365–379 (2003).
[Crossref]

2002 (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66,066608, (2002).
[Crossref]

2001 (3)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294,1080–1082 (2001).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave,” Opt. Express 8,173–190, (2001).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87,253902 (2001).
[Crossref] [PubMed]

1995 (1)

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, “EIT: Propagation dynamics,” Phys. Rev. Lett. 74,2447–2450, (1995).
[Crossref] [PubMed]

1979 (1)

Asakawa, K.

Balistreri, M. L. M.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294,1080–1082 (2001).
[Crossref] [PubMed]

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66,066608, (2002).
[Crossref]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

Borel, P. I.

Chang, S. W.

Chang-Hasnain, C.

Chuang, S.L.

Eich, M.

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85,4866–4868, (2004).
[Crossref]

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

Engelen, R.J.P.

R.J.P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14,1658–1672 (2006).
[Crossref] [PubMed]

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

Fage-Pedersen, J.

Frandsen, L. H.

Gaeta, A.

Gersen, H.

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294,1080–1082 (2001).
[Crossref] [PubMed]

Hamann, H.F.

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438,65–69 (2005).
[Crossref] [PubMed]

Harris, S. E.

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, “EIT: Propagation dynamics,” Phys. Rev. Lett. 74,2447–2450, (1995).
[Crossref] [PubMed]

Hughes, S.

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94,033903, (2005).
[Crossref] [PubMed]

Hulst, N. F. van

R.J.P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14,1658–1672 (2006).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294,1080–1082 (2001).
[Crossref] [PubMed]

Hulst, N.F. van

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66,066608, (2002).
[Crossref]

Ikeda, N.

Jain, M.

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, “EIT: Propagation dynamics,” Phys. Rev. Lett. 74,2447–2450, (1995).
[Crossref] [PubMed]

Jin, G. Y.

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, “EIT: Propagation dynamics,” Phys. Rev. Lett. 74,2447–2450, (1995).
[Crossref] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66,066608, (2002).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave,” Opt. Express 8,173–190, (2001).
[Crossref] [PubMed]

Joannopoulos, J.D.

M. Soljacic and J.D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Materials 3,211–219 (2004).
[Crossref] [PubMed]

Johnson, S. G.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66,066608, (2002).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave,” Opt. Express 8,173–190, (2001).
[Crossref] [PubMed]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

Karle, T.J.

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, “EIT: Propagation dynamics,” Phys. Rev. Lett. 74,2447–2450, (1995).
[Crossref] [PubMed]

Khurgin, J.B.

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294,1080–1082 (2001).
[Crossref] [PubMed]

Korterik, J.P.

R.J.P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14,1658–1672 (2006).
[Crossref] [PubMed]

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

Krauss, T.F.

M. Settle, M. Salib, A. Michaeli, and T.F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography,” Opt. Express 14,2440–2245 (2006).
[Crossref] [PubMed]

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

Ku, P. C.

Kuipers, L.

R.J.P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14,1658–1672 (2006).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294,1080–1082 (2001).
[Crossref] [PubMed]

Kuramochi, E.

Lavrinenko, A. V.

Li, T.

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66,066608, (2002).
[Crossref]

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35,365–379 (2003).
[Crossref]

McNab, S. J.

McNab, S.J.

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438,65–69 (2005).
[Crossref] [PubMed]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35,365–379 (2003).
[Crossref]

Michaeli, A.

Mitsugi, S.

Miyagi, M.

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35,365–379 (2003).
[Crossref]

Nishida, S.

Notomi, M.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12,1551–1561, 2004.
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87,253902 (2001).
[Crossref] [PubMed]

O’Boyle, M.

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438,65–69 (2005).
[Crossref] [PubMed]

Okawachi, Y.

Palinginis, P.

Petrov, A. Yu.

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85,4866–4868, (2004).
[Crossref]

Ramunno, L.

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94,033903, (2005).
[Crossref] [PubMed]

Ryu, H-Y

Salib, M.

Sedgwich, F.

Settle, M.

Sharping, J.

Shinya, A.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12,1551–1561, 2004.
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87,253902 (2001).
[Crossref] [PubMed]

Sipe, J.E.

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94,033903, (2005).
[Crossref] [PubMed]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66,066608, (2002).
[Crossref]

Soljacic, M.

M. Soljacic and J.D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Materials 3,211–219 (2004).
[Crossref] [PubMed]

Sugimoto, Y.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87,253902 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87,253902 (2001).
[Crossref] [PubMed]

Vlasov, Y. A.

Vlasov, Y.A.

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438,65–69 (2005).
[Crossref] [PubMed]

Wang, H.

Watanabe, Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87,253902 (2001).
[Crossref] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87,253902 (2001).
[Crossref] [PubMed]

Young, J.F.

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94,033903, (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85,4866–4868, (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438,65–69 (2005).
[Crossref] [PubMed]

Nature Materials (1)

M. Soljacic and J.D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Materials 3,211–219 (2004).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35,365–379 (2003).
[Crossref]

Phys. Rev. E (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66,066608, (2002).
[Crossref]

Phys. Rev. Lett. (5)

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,073903 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94,123901 (2005).
[Crossref] [PubMed]

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94,033903, (2005).
[Crossref] [PubMed]

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, “EIT: Propagation dynamics,” Phys. Rev. Lett. 74,2447–2450, (1995).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87,253902 (2001).
[Crossref] [PubMed]

Science (1)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294,1080–1082 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Top view and cross-section of the W2 waveguide used in the experiments. The lattice period is 420 nm and the hole diameter is 235 nm (r/a=0.28).

Fig. 2.
Fig. 2.

Comparison of W2 bandstructure calculated by 2D plane wave expansion and 3D FDTD calculation. The mode symmetries are indicated on the left (Hy field components) with the numbers referring to the corresponding points on the bandstructure. Different coloured points in the 3D calculation denote different modes. The light line for the silica cladding is indicated by the dashed diagonal line. The slow light region of interest is highlighted by the oval.

Fig. 3.
Fig. 3.

Bandstructure obtained by PSNOM measurement with 3D FDTD calculation overlaid. The FDTD points for the TE mode (blue dots) are identical to those shown in Fig. 2 and show very good agreement with the measured data. The TM mode (black dots) can be identified at k>0.43 2π/a by the fact that it has a weak interaction with the photonic crystal lattice, and therefore does not show a clear stopband at the Brillouin zone band-edge, i.e. it appears as a straight diagonal line. The dashed line represents the light line for air.

Fig. 4.
Fig. 4.

Tracing pulse propagation in the slow mode with fs pulses. (a) Experimental result of tracing the pulses propagating in the waveguide. (b) Experimental result obtained by Fourier filtering the slow mode. The Fourier filtering highlights the properties of the slow mode (c) Simulated pulse propagation derived from the dispersion curve for comparison with (b).

Fig.5.
Fig.5.

Slow pulse propagating near the entrance of the W2 waveguide, highlighting the compression from 167 μm for the equivalent cut-off spectrum down to 6.8 μm for the measured spectrum.

Tables (2)

Tables Icon

Table 1. Comparison of second and third order dispersion in W1 and W2 waveguides. Data for W1 waveguides are derived from [7].

Tables Icon

Table 2. Comparison of a range of slow light systems.

Metrics