Abstract

In this paper, we investigate the contribution of deep and shallow trapped ions on the second-order nonlinearity during typical poling procedures in soda-lime glass. The zero-electric field potential barriers of each contribution were estimated. The shallow traps, measured through the electrical ionic current, was determined as ~0.34 eV; while deep trap activation energy, measured by means of the thermal/electric field activated luminescence, was estimated ~3.8 eV. The traps show different dependence on its thermal energy onset for different applied electric field. The ionic current is linearly dependent on the electric field. The luminescence has a minimum electric field ~3.6 kV/cm and thermal energy ~31 meV (~87°C) to occur. The average ionic jump lengths for both processes are also estimated, and the deep trap length is about ten times shorter than the shallow trap one. Samples poled at the border of the luminescence onset parameters revealed that the higher its contributions the more stable the induced second order nonlinearity.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, S. R. J. Brueck, "Large second-order nonlinearity in poled fused-silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  2. A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000)
    [CrossRef]
  3. M. Qiu, S. Egawa, K. Horimoto, T. Mizunami, "The thickness evolution of the second-order nonlinearity layer in thermally poled fused silica," Opt. Commun. 189, 161-166 (2001).
    [CrossRef]
  4. X. M. Liu, M. De Zhang, "Theoretical Study for thermal/electric field poling of fused silica," Jpn. J. Appl. Phys. 40, 4069-4076 (2001).
    [CrossRef]
  5. Y. Quiquempois, N. Godbout, S. Lacroix, "Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset on the second-order nonlinearity," Phys. Rev. A 65, 043816-1-043816-14 (2002).
    [CrossRef]
  6. C. Corbari, P.G. Kazansky, S. A. Slattery, D. N. Nikogosyan, "Ultraviolet poling of pure silica by high-intensity femtosecond radiation," Appl. Phys. Lett. 86, 071106-1-071106-3 (2005)
  7. A. L. Moura, M. T. de Araujo, M V. D. Vermelho, J. S. Aitchison, "Stable induced second-order nonlinearity in soft glass by thermal poling," J. Appl. Phys. 100, 033509-1-033509-5 (2006).
    [CrossRef]
  8. N. Godbout, S. Lacroix, "Characterization of thermal poling in silica glasses by current measurements," J. Non-Cryst. Solids 316, 338-348 (2003).
    [CrossRef]
  9. Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, I.C.S. Carvalho, "Near-surface modification of the third-order nonlinear susceptibility in thermally poled Infrasil ™ glasses," Appl. Phys. Lett. 86, 181106-1 - 181106-3 (2005).
    [CrossRef]
  10. T. G. Alley, S. R. J. Brueck, "Visualization of the nonlinear optical space-charge region of the bulk thermally poled fused-silica glass," Opt. Lett. 23, 1170-1172 (1998).
    [CrossRef]
  11. H. An, S. Fleming, G. Cox, "Visualization of the second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
    [CrossRef]
  12. L. J. Henry, "Correlation of Ge E´ defect sites with second-harmonic generation in poled high-water fused silica," Opt. Lett. 20, 1592-1594 (1995).
    [CrossRef] [PubMed]
  13. R. A. B. Devine, C. Fiori, "Thermally activated peroxy radical dissociation and annealing in vitreous SiO2," J. Appl. Phys. 58, 3368-3372 (1985).
    [CrossRef]
  14. C. P. Bean, J. C. Fisher, and D. A. Vermilyea, "Ionic conductivity of tantalum oxide at very high fields," Phys. Rev. 101, 551-554 (1956)
    [CrossRef]
  15. J. Vermeer, "The electrical conduction of glass at high field strengths," Physica 22, 1257-1268 (1956)
    [CrossRef]
  16. M. Tomozawa, D. W. Shin, "Charge carrier concentration and mobility of ions in a silica glass," J. Non-Cryst. Solids 241, 140-148 (1998)
    [CrossRef]
  17. A. Pitarch, J. Bisquert, G. Garcia-Belmonte, "Mobile cation concentration in ionically conducting glasses calculated by means of Mott-Schottky capacitance-voltage characteristics," J. Non-Cryst. Solids 324, 196-200 (2003)
    [CrossRef]
  18. T. S. Hutchison, D. C. Baird, "Diffusion in Solids," in The physics of engineering solids, (2nd Edition - A John Wiley and Sons, NY, London, Sydney, 1968)
  19. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
    [CrossRef]
  20. T. G. Alley, S.R.J. Brueck, R.A. Myers, "Space Charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998)
    [CrossRef]
  21. M. Qiu, E. Pi, G. Orriols, M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998).
    [CrossRef]
  22. M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, G. Martinelli, "High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling," Opt. Express 14, 1524-1532 (2006).
    [CrossRef] [PubMed]

2006 (1)

2004 (1)

H. An, S. Fleming, G. Cox, "Visualization of the second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

2003 (2)

N. Godbout, S. Lacroix, "Characterization of thermal poling in silica glasses by current measurements," J. Non-Cryst. Solids 316, 338-348 (2003).
[CrossRef]

A. Pitarch, J. Bisquert, G. Garcia-Belmonte, "Mobile cation concentration in ionically conducting glasses calculated by means of Mott-Schottky capacitance-voltage characteristics," J. Non-Cryst. Solids 324, 196-200 (2003)
[CrossRef]

2001 (2)

M. Qiu, S. Egawa, K. Horimoto, T. Mizunami, "The thickness evolution of the second-order nonlinearity layer in thermally poled fused silica," Opt. Commun. 189, 161-166 (2001).
[CrossRef]

X. M. Liu, M. De Zhang, "Theoretical Study for thermal/electric field poling of fused silica," Jpn. J. Appl. Phys. 40, 4069-4076 (2001).
[CrossRef]

2000 (1)

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000)
[CrossRef]

1998 (5)

M. Tomozawa, D. W. Shin, "Charge carrier concentration and mobility of ions in a silica glass," J. Non-Cryst. Solids 241, 140-148 (1998)
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

T. G. Alley, S.R.J. Brueck, R.A. Myers, "Space Charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998)
[CrossRef]

M. Qiu, E. Pi, G. Orriols, M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998).
[CrossRef]

T. G. Alley, S. R. J. Brueck, "Visualization of the nonlinear optical space-charge region of the bulk thermally poled fused-silica glass," Opt. Lett. 23, 1170-1172 (1998).
[CrossRef]

1995 (1)

1991 (1)

1985 (1)

R. A. B. Devine, C. Fiori, "Thermally activated peroxy radical dissociation and annealing in vitreous SiO2," J. Appl. Phys. 58, 3368-3372 (1985).
[CrossRef]

1956 (2)

C. P. Bean, J. C. Fisher, and D. A. Vermilyea, "Ionic conductivity of tantalum oxide at very high fields," Phys. Rev. 101, 551-554 (1956)
[CrossRef]

J. Vermeer, "The electrical conduction of glass at high field strengths," Physica 22, 1257-1268 (1956)
[CrossRef]

Alley, T. G.

T. G. Alley, S. R. J. Brueck, "Visualization of the nonlinear optical space-charge region of the bulk thermally poled fused-silica glass," Opt. Lett. 23, 1170-1172 (1998).
[CrossRef]

T. G. Alley, S.R.J. Brueck, R.A. Myers, "Space Charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998)
[CrossRef]

An, H.

H. An, S. Fleming, G. Cox, "Visualization of the second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

Balestrain, V.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000)
[CrossRef]

Bean, C. P.

C. P. Bean, J. C. Fisher, and D. A. Vermilyea, "Ionic conductivity of tantalum oxide at very high fields," Phys. Rev. 101, 551-554 (1956)
[CrossRef]

Bibiche, M.

Bisquert, J.

A. Pitarch, J. Bisquert, G. Garcia-Belmonte, "Mobile cation concentration in ionically conducting glasses calculated by means of Mott-Schottky capacitance-voltage characteristics," J. Non-Cryst. Solids 324, 196-200 (2003)
[CrossRef]

Brueck, S. R. J.

Brueck, S.R.J.

T. G. Alley, S.R.J. Brueck, R.A. Myers, "Space Charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998)
[CrossRef]

Carvalho, I. C. S.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000)
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Cordeiro, C. M. B.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000)
[CrossRef]

Cox, G.

H. An, S. Fleming, G. Cox, "Visualization of the second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

De Zhang, M.

X. M. Liu, M. De Zhang, "Theoretical Study for thermal/electric field poling of fused silica," Jpn. J. Appl. Phys. 40, 4069-4076 (2001).
[CrossRef]

Devine, R. A. B.

R. A. B. Devine, C. Fiori, "Thermally activated peroxy radical dissociation and annealing in vitreous SiO2," J. Appl. Phys. 58, 3368-3372 (1985).
[CrossRef]

Egawa, S.

M. Qiu, S. Egawa, K. Horimoto, T. Mizunami, "The thickness evolution of the second-order nonlinearity layer in thermally poled fused silica," Opt. Commun. 189, 161-166 (2001).
[CrossRef]

Fiori, C.

R. A. B. Devine, C. Fiori, "Thermally activated peroxy radical dissociation and annealing in vitreous SiO2," J. Appl. Phys. 58, 3368-3372 (1985).
[CrossRef]

Fisher, J. C.

C. P. Bean, J. C. Fisher, and D. A. Vermilyea, "Ionic conductivity of tantalum oxide at very high fields," Phys. Rev. 101, 551-554 (1956)
[CrossRef]

Fleming, S.

H. An, S. Fleming, G. Cox, "Visualization of the second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

Garcia, F. C.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Garcia-Belmonte, G.

A. Pitarch, J. Bisquert, G. Garcia-Belmonte, "Mobile cation concentration in ionically conducting glasses calculated by means of Mott-Schottky capacitance-voltage characteristics," J. Non-Cryst. Solids 324, 196-200 (2003)
[CrossRef]

Godbout, N.

N. Godbout, S. Lacroix, "Characterization of thermal poling in silica glasses by current measurements," J. Non-Cryst. Solids 316, 338-348 (2003).
[CrossRef]

Guignard, M.

Henry, L. J.

Hering, E.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Horimoto, K.

M. Qiu, S. Egawa, K. Horimoto, T. Mizunami, "The thickness evolution of the second-order nonlinearity layer in thermally poled fused silica," Opt. Commun. 189, 161-166 (2001).
[CrossRef]

Kudlinski, A.

Lacroix, S.

N. Godbout, S. Lacroix, "Characterization of thermal poling in silica glasses by current measurements," J. Non-Cryst. Solids 316, 338-348 (2003).
[CrossRef]

Lesche, B.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000)
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Liu, X. M.

X. M. Liu, M. De Zhang, "Theoretical Study for thermal/electric field poling of fused silica," Jpn. J. Appl. Phys. 40, 4069-4076 (2001).
[CrossRef]

Margulis, W.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000)
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Martinelli, G.

Mizunami, T.

M. Qiu, S. Egawa, K. Horimoto, T. Mizunami, "The thickness evolution of the second-order nonlinearity layer in thermally poled fused silica," Opt. Commun. 189, 161-166 (2001).
[CrossRef]

Mukherjee, N.

Myers, R. A.

Myers, R.A.

T. G. Alley, S.R.J. Brueck, R.A. Myers, "Space Charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998)
[CrossRef]

Nazabal, V.

Orriols, G.

Pi, E.

Pitarch, A.

A. Pitarch, J. Bisquert, G. Garcia-Belmonte, "Mobile cation concentration in ionically conducting glasses calculated by means of Mott-Schottky capacitance-voltage characteristics," J. Non-Cryst. Solids 324, 196-200 (2003)
[CrossRef]

Qiu, M.

M. Qiu, S. Egawa, K. Horimoto, T. Mizunami, "The thickness evolution of the second-order nonlinearity layer in thermally poled fused silica," Opt. Commun. 189, 161-166 (2001).
[CrossRef]

M. Qiu, E. Pi, G. Orriols, M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998).
[CrossRef]

Quiquempois, Y.

Shin, D. W.

M. Tomozawa, D. W. Shin, "Charge carrier concentration and mobility of ions in a silica glass," J. Non-Cryst. Solids 241, 140-148 (1998)
[CrossRef]

Smektala, F.

Tomozawa, M.

M. Tomozawa, D. W. Shin, "Charge carrier concentration and mobility of ions in a silica glass," J. Non-Cryst. Solids 241, 140-148 (1998)
[CrossRef]

Triques, A. L. C.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000)
[CrossRef]

Vermeer, J.

J. Vermeer, "The electrical conduction of glass at high field strengths," Physica 22, 1257-1268 (1956)
[CrossRef]

Vermilyea, D. A.

C. P. Bean, J. C. Fisher, and D. A. Vermilyea, "Ionic conductivity of tantalum oxide at very high fields," Phys. Rev. 101, 551-554 (1956)
[CrossRef]

Zeghlache, H.

Appl. Phys. Lett. (3)

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000)
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

H. An, S. Fleming, G. Cox, "Visualization of the second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

J. Appl. Phys. (1)

R. A. B. Devine, C. Fiori, "Thermally activated peroxy radical dissociation and annealing in vitreous SiO2," J. Appl. Phys. 58, 3368-3372 (1985).
[CrossRef]

J. Non-Cryst. Solids (4)

M. Tomozawa, D. W. Shin, "Charge carrier concentration and mobility of ions in a silica glass," J. Non-Cryst. Solids 241, 140-148 (1998)
[CrossRef]

A. Pitarch, J. Bisquert, G. Garcia-Belmonte, "Mobile cation concentration in ionically conducting glasses calculated by means of Mott-Schottky capacitance-voltage characteristics," J. Non-Cryst. Solids 324, 196-200 (2003)
[CrossRef]

T. G. Alley, S.R.J. Brueck, R.A. Myers, "Space Charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998)
[CrossRef]

N. Godbout, S. Lacroix, "Characterization of thermal poling in silica glasses by current measurements," J. Non-Cryst. Solids 316, 338-348 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

X. M. Liu, M. De Zhang, "Theoretical Study for thermal/electric field poling of fused silica," Jpn. J. Appl. Phys. 40, 4069-4076 (2001).
[CrossRef]

Opt. Commun. (1)

M. Qiu, S. Egawa, K. Horimoto, T. Mizunami, "The thickness evolution of the second-order nonlinearity layer in thermally poled fused silica," Opt. Commun. 189, 161-166 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. (1)

C. P. Bean, J. C. Fisher, and D. A. Vermilyea, "Ionic conductivity of tantalum oxide at very high fields," Phys. Rev. 101, 551-554 (1956)
[CrossRef]

Physica (1)

J. Vermeer, "The electrical conduction of glass at high field strengths," Physica 22, 1257-1268 (1956)
[CrossRef]

Other (5)

T. S. Hutchison, D. C. Baird, "Diffusion in Solids," in The physics of engineering solids, (2nd Edition - A John Wiley and Sons, NY, London, Sydney, 1968)

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, I.C.S. Carvalho, "Near-surface modification of the third-order nonlinear susceptibility in thermally poled Infrasil ™ glasses," Appl. Phys. Lett. 86, 181106-1 - 181106-3 (2005).
[CrossRef]

Y. Quiquempois, N. Godbout, S. Lacroix, "Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset on the second-order nonlinearity," Phys. Rev. A 65, 043816-1-043816-14 (2002).
[CrossRef]

C. Corbari, P.G. Kazansky, S. A. Slattery, D. N. Nikogosyan, "Ultraviolet poling of pure silica by high-intensity femtosecond radiation," Appl. Phys. Lett. 86, 071106-1-071106-3 (2005)

A. L. Moura, M. T. de Araujo, M V. D. Vermelho, J. S. Aitchison, "Stable induced second-order nonlinearity in soft glass by thermal poling," J. Appl. Phys. 100, 033509-1-033509-5 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Typical thermal-electric field luminescence spectra of soda-lime glass.

Fig. 2:
Fig. 2:

Activation energies of the luminescence (solid circle) and the induced ionic current (solid square). The solid lines are only guide to the eyes.

Fig. 3:
Fig. 3:

The minimum electric field for the onset of the induced electrical ionic current in soda-lime glass.

Fig. 4:
Fig. 4:

The minimum electric field for the onset of the luminescence in soda-lime glass. The numbers inside circles correspond to distinct samples poling conditions

Fig. 5:
Fig. 5:

The minimum electric field for the onset of the induced electrical ionic current in soda-lime glass.

Fig. 6:
Fig. 6:

Second harmonic decay of samples poled under conditions shown in numbered circles in Fig. 4.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

j i = j 0 i exp [ ( Φ i α i E k B T ) ]

Metrics