Abstract

We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd:YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold fluences down to ~ 7 μJ/mm2 are observed. The large FSR facilitates wavelength tuning over the full gain spectrum of the chosen laser dye and we demonstrate 45 nm tunability using a single laser dye by changing the grating period and dye solution refractive index. The lasers are straight-forward to integrate on lab-on-a-chip microsystems, e.g. for novel sensor concepts, where coherent light in the visible range is desired.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  2. E. Verpoorte, "Chip vision-optics for microchips," Lab. Chip 3, 42N-52N (2003).
  3. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
    [CrossRef] [PubMed]
  4. J. C. Galas, C. Peroz, Q. Kou, and Y. Chen, "Microfluidic dye laser chip for intra-cavity absorption measurements," in Digest of the IEEE/LEOS Summer Topical Meetings 2006, pp. 60-61 (Institute of Electrical and Electronics Engineers, New York, 2006).
  5. L. Lading, L. B. Nielsen, and T. Sevel, "Comparing Biosensors," in Proceedings of IEEE Sensors 2002, vol. 1, pp. 229-232 (Institute of Electrical and Electronics Engineers, New York, 2002).
  6. B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
    [CrossRef]
  7. S. Balslev and A. Kristensen, "Microfluidic Single Mode Laser Using High Order Bragg Grating and Antiguiding Segments," Opt. Express 13, 344-351 (2005).
    [CrossRef] [PubMed]
  8. M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, "A Coupled Cavity Micro Fluidic Dye Ring Laser," Microelectron. Eng. 78-79, 185-189 (2005).
    [CrossRef]
  9. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
    [CrossRef] [PubMed]
  10. J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
    [CrossRef]
  11. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
    [CrossRef] [PubMed]
  12. Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
    [CrossRef]
  13. M. Gersborg-Hansen and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89, 103518 (2006).
    [CrossRef]
  14. C. Peroz, J. C. Galas, J. Shi, L. LeGratiet, and Y. Chen, "Fabrication of third order Bragg gratings by UV nanoimprint lithography for optofluidic lasers," in Digest of the IEEE/LEOS Summer Topical Meetings 2006, pp. 62-63 (Institute of Electrical and Electronics Engineers, New York, 2006).
  15. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
    [CrossRef] [PubMed]
  16. P. Lalanne and M. Hutley, "Artificial Media Optical Properties - Subwavelength Scale," in Encyclopedia of Optical Engineering, pp. 62-71 (Dekker, New York, 2003).
  17. M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, "Combined electron beam and UV lithography in SU-8," Microelectron. Eng., in press.
  18. X. Zhang and S. J. Haswell, "Materials Matter in Microfluidic Devices," MRS Bull. 31, 95-99 (2006).
    [CrossRef]
  19. B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 023102 (2006).
    [CrossRef]

2006

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

M. Gersborg-Hansen and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89, 103518 (2006).
[CrossRef]

X. Zhang and S. J. Haswell, "Materials Matter in Microfluidic Devices," MRS Bull. 31, 95-99 (2006).
[CrossRef]

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 023102 (2006).
[CrossRef]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
[CrossRef] [PubMed]

2005

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, "A Coupled Cavity Micro Fluidic Dye Ring Laser," Microelectron. Eng. 78-79, 185-189 (2005).
[CrossRef]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

S. Balslev and A. Kristensen, "Microfluidic Single Mode Laser Using High Order Bragg Grating and Antiguiding Segments," Opt. Express 13, 344-351 (2005).
[CrossRef] [PubMed]

2003

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

E. Verpoorte, "Chip vision-optics for microchips," Lab. Chip 3, 42N-52N (2003).

Balslev, S.

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 023102 (2006).
[CrossRef]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, "A Coupled Cavity Micro Fluidic Dye Ring Laser," Microelectron. Eng. 78-79, 185-189 (2005).
[CrossRef]

S. Balslev and A. Kristensen, "Microfluidic Single Mode Laser Using High Order Bragg Grating and Antiguiding Segments," Opt. Express 13, 344-351 (2005).
[CrossRef] [PubMed]

Bawendi, M. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Belotti, M.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Bilenberg, B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 023102 (2006).
[CrossRef]

Chan, Y.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Chen, Y.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Conroy, R. S.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Emery, T.

Galas, J. C.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Gersborg-Hansen, M.

M. Gersborg-Hansen and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89, 103518 (2006).
[CrossRef]

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, "A Coupled Cavity Micro Fluidic Dye Ring Laser," Microelectron. Eng. 78-79, 185-189 (2005).
[CrossRef]

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, "Combined electron beam and UV lithography in SU-8," Microelectron. Eng., in press.

Geschke, O.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

Haswell, S. J.

X. Zhang and S. J. Haswell, "Materials Matter in Microfluidic Devices," MRS Bull. 31, 95-99 (2006).
[CrossRef]

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Jorgensen, A. M.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

Kou, Q.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Kristensen, A.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

M. Gersborg-Hansen and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89, 103518 (2006).
[CrossRef]

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 023102 (2006).
[CrossRef]

S. Balslev and A. Kristensen, "Microfluidic Single Mode Laser Using High Order Bragg Grating and Antiguiding Segments," Opt. Express 13, 344-351 (2005).
[CrossRef] [PubMed]

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, "A Coupled Cavity Micro Fluidic Dye Ring Laser," Microelectron. Eng. 78-79, 185-189 (2005).
[CrossRef]

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, "Combined electron beam and UV lithography in SU-8," Microelectron. Eng., in press.

Kutter, J. P.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

Li, Z.

Mayers, B. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Mironov, A.

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, "Combined electron beam and UV lithography in SU-8," Microelectron. Eng., in press.

Mogensen, K. B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

Mortensen, N. A.

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, "A Coupled Cavity Micro Fluidic Dye Ring Laser," Microelectron. Eng. 78-79, 185-189 (2005).
[CrossRef]

Nocera, D. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Psaltis, D.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Rasmussen, T.

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 023102 (2006).
[CrossRef]

Scherer, A.

Snakenborg, D.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

Snee, P. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Thamdrup, L. H.

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, "Combined electron beam and UV lithography in SU-8," Microelectron. Eng., in press.

Torres, J.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Verpoorte, E.

E. Verpoorte, "Chip vision-optics for microchips," Lab. Chip 3, 42N-52N (2003).

Vezenov, D. V.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Whitesides, G. M.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Yesilyurt, I.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Zhang, X.

X. Zhang and S. J. Haswell, "Materials Matter in Microfluidic Devices," MRS Bull. 31, 95-99 (2006).
[CrossRef]

Zhang, Z.

Appl. Phys. Lett.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

M. Gersborg-Hansen and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89, 103518 (2006).
[CrossRef]

J. Am. Chem. Soc.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

J. Appl. Phys.

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 023102 (2006).
[CrossRef]

J. Micromech. Microeng.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Lab. Chip

E. Verpoorte, "Chip vision-optics for microchips," Lab. Chip 3, 42N-52N (2003).

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab. Chip 6, 213-217 (2006).
[CrossRef] [PubMed]

Microelectron. Eng.

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, "A Coupled Cavity Micro Fluidic Dye Ring Laser," Microelectron. Eng. 78-79, 185-189 (2005).
[CrossRef]

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, "Combined electron beam and UV lithography in SU-8," Microelectron. Eng., in press.

MRS Bull.

X. Zhang and S. J. Haswell, "Materials Matter in Microfluidic Devices," MRS Bull. 31, 95-99 (2006).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Opt. Express

Other

C. Peroz, J. C. Galas, J. Shi, L. LeGratiet, and Y. Chen, "Fabrication of third order Bragg gratings by UV nanoimprint lithography for optofluidic lasers," in Digest of the IEEE/LEOS Summer Topical Meetings 2006, pp. 62-63 (Institute of Electrical and Electronics Engineers, New York, 2006).

P. Lalanne and M. Hutley, "Artificial Media Optical Properties - Subwavelength Scale," in Encyclopedia of Optical Engineering, pp. 62-71 (Dekker, New York, 2003).

J. C. Galas, C. Peroz, Q. Kou, and Y. Chen, "Microfluidic dye laser chip for intra-cavity absorption measurements," in Digest of the IEEE/LEOS Summer Topical Meetings 2006, pp. 60-61 (Institute of Electrical and Electronics Engineers, New York, 2006).

L. Lading, L. B. Nielsen, and T. Sevel, "Comparing Biosensors," in Proceedings of IEEE Sensors 2002, vol. 1, pp. 229-232 (Institute of Electrical and Electronics Engineers, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Sketch of a fabricated optofluidic third order DFB dye laser. (a) Top-view illustrating the 500×500 μm2 DFB laser resonator with central phase shift situated in a microfluidic channel. (b) Atomic force micrograph of the central region of the third order DFB laser resonator. In the middle an extra channel width is included to yield the π 2 phase shift. The width of the white scale bar is 600 nm. (c) Side-view showing the refractive index distribution of the structure.

Fig. 2.
Fig. 2.

Laser spectra from different laser devices showing a tunability of the lasers of 45 nm by changing the grating period and the refractive index of the R6G solution. Lasers with three different periods were fabricated. The data is summarized in Table 1.

Fig. 3.
Fig. 3.

Typical pump pulse fluence/output laser power graph for the laser device with spectrum shown in Fig. 2(e). The graph follows the standard pump/output relation of two linear segments around a laser threshold of ~ 7 μJ/mm2.

Fig. 4.
Fig. 4.

Left: Laser wavelength as a function of grating period for different R6G solutions. The fits indicate a linear dependence for each solution. Right: Laser wavelength as a function of dye solution refractive index for different R6G solutions with fixed grating period Λ = 599 nm. The fit indicates a linear dependence.

Tables (1)

Tables Icon

Table 1. Summary of the data presented in Fig. 2. The laser wavelength λ is tuned by changing the grating period Λ and the refractive index n of the R6G solution.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m = 2 Λ op

Metrics