Abstract

A simplified Fourier optics approach is applied to study how near-field optical disks retrieve evanescent signals through random nanostructure. The statistical properties of the random nanostructures are used to realize the general behavior of near-field optical disks. The mechanism of its super-resolution capability and an analytical expression of the readout contrast of near-field optical disks with random apertures are derived. The resolution of near-field optical disk is determined by the size of the random nanostructure.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata, M. Ohtsu, and M. Irie, ed., Nano-Optics (Springer, Berlin Heidelberg,2002).
  2. M. Ohtsu, ed., Near-Field Nano/Atom Optics and Technology (Springer, Tokyo,1998).
    [CrossRef]
  3. P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc., Hoboken, New Jersey,2004).
    [CrossRef]
  4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Inc., Singapore,1996).
  5. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge,1995)
  6. E. Wolf and M. Nieto-Vesperinas, “Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences,” J. Opt. Soc. Am. A 2,886–890 (1985).
    [CrossRef]
  7. E. H. Synge, “An application of piezoelectricity to microscopy,” Philos. Mag. 6,356–362 (1928).
  8. J. M. Vigoureux and D. Courjon, “Detection of nonradiative fields in light of the Heisenberg uncertainty principle and Rayleigh criterion,” Appl. Opt. 31,3170–3177 (1992).
    [CrossRef] [PubMed]
  9. J. M. Vigoureux, F. Depasse, and D. Courjon, “Superrolution of near-field optical microscopy defined from properties of confined electromagnetic waves,” Appl. Opt. 31,3036–3045 (1992).
    [CrossRef] [PubMed]
  10. E.A. Ash and G. Nicholls, “ Super-resolution aperture scanning microscope,” Nature 237,510–512 (1972)
    [CrossRef] [PubMed]
  11. D. W. Pohl, W. Denk, and M. Lanz, “Optical spectroscopy: Image recording with resolution lambda /20,” Appl. Phys. Lett. 44,651–653 (1984).
    [CrossRef]
  12. K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32,5210–5213 (1993)
    [CrossRef]
  13. H. Awano, S. Ohnuki, H. Shirai, and N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69,4257–4259 (1996).
    [CrossRef]
  14. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73,2078–2080 (1998).
    [CrossRef]
  15. T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
    [CrossRef]
  16. W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
    [CrossRef]
  17. T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, “Rigid bubble bit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,” Appl. Phys. Lett. 81,4697–4699 (2002).
    [CrossRef]
  18. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, and V. M. Shalaev, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72,4149–4152 (1994).
    [CrossRef] [PubMed]
  19. W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78,685–687 (2001).
    [CrossRef]
  20. F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jap. J. Appl. Phys. 40,4101–4102 (2001).
    [CrossRef]
  21. L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, “Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,” J. Appl. Phys. 91,10209–10211 (2002).
    [CrossRef]
  22. F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys., Part 1 42,1000–1004 (2003).
    [CrossRef]
  23. W.-C. Liu and D. P. Tsai, “Nonlinear near-field optical effects of the AgOx-Type super-resolution near-field structure,” Jpn. J. Appl. Phys. 42, Part 1,1031–1032 (2003).
    [CrossRef]
  24. W.-C. Liu, M.-Y. Ng, and D. P. Tsai, “Surface plasmon effects on the far-field signals of AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys. 43,4713–4717 (2004).
    [CrossRef]
  25. T. C. Chu, W.-C. Liu, and D. P. Tsai, “Near- and far-field optical properties of embedded scatters in AgOx-type super-resolution near-field structures,” Scanning, 26,102–105 (2004).
  26. T. C. Chu, W.-C. Liu, and D. P. Tsai, “Enhanced resolution induced by random silver nanoparticles in near-field optical disks,” Opt. Commun. 246,561–567 (2005).
    [CrossRef]
  27. J. M. Ji, L. P. Shi, K. G. Lim, X. S. Miao, H. X. Yang, and T. C. Chong, “Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure,” Jpn. J. Appl. Phys. 44,3620–3622 (2005).
    [CrossRef]
  28. M.-Y. Ng and W.-C. Liu, “Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles,” Opt. Exp. 13,9422–9430 (2005).
    [CrossRef]
  29. F. Zhang, W. Xu, Y. Wang, and F. Gan, “Static optical recording properties of super-resolution near-field structure with Bismuth mask layer,” Jpn. J. Appl. Phys. 43,7802–7806 (2004).
    [CrossRef]
  30. Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai, and D. P. Tsai, “Nonlinear optical properties of the Au-SiO nanocomposite superresolution near-field thin film,” Jpn. J. Appl. Phys. 43,5020–5023 (2004).
    [CrossRef]
  31. H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
    [CrossRef]
  32. T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys. 43,L88–L90 (2004).
    [CrossRef]
  33. T. Kikukawa, T. Kato, H. Shingai, and H. Utsunomiya, “High-density read-only memory disc with super resolution reflective layer,” Jpn. J. Appl. Phys. 40,1624–1628 (2001).
    [CrossRef]
  34. J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jap. J. Appl. Phys. 45,1383–1384 (2006)..
    [CrossRef]

2006 (1)

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jap. J. Appl. Phys. 45,1383–1384 (2006)..
[CrossRef]

2005 (3)

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Enhanced resolution induced by random silver nanoparticles in near-field optical disks,” Opt. Commun. 246,561–567 (2005).
[CrossRef]

J. M. Ji, L. P. Shi, K. G. Lim, X. S. Miao, H. X. Yang, and T. C. Chong, “Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure,” Jpn. J. Appl. Phys. 44,3620–3622 (2005).
[CrossRef]

M.-Y. Ng and W.-C. Liu, “Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles,” Opt. Exp. 13,9422–9430 (2005).
[CrossRef]

2004 (5)

F. Zhang, W. Xu, Y. Wang, and F. Gan, “Static optical recording properties of super-resolution near-field structure with Bismuth mask layer,” Jpn. J. Appl. Phys. 43,7802–7806 (2004).
[CrossRef]

Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai, and D. P. Tsai, “Nonlinear optical properties of the Au-SiO nanocomposite superresolution near-field thin film,” Jpn. J. Appl. Phys. 43,5020–5023 (2004).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, “Surface plasmon effects on the far-field signals of AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys. 43,4713–4717 (2004).
[CrossRef]

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Near- and far-field optical properties of embedded scatters in AgOx-type super-resolution near-field structures,” Scanning, 26,102–105 (2004).

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys. 43,L88–L90 (2004).
[CrossRef]

2003 (4)

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys., Part 1 42,1000–1004 (2003).
[CrossRef]

W.-C. Liu and D. P. Tsai, “Nonlinear near-field optical effects of the AgOx-Type super-resolution near-field structure,” Jpn. J. Appl. Phys. 42, Part 1,1031–1032 (2003).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

2002 (2)

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, “Rigid bubble bit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,” Appl. Phys. Lett. 81,4697–4699 (2002).
[CrossRef]

L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, “Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,” J. Appl. Phys. 91,10209–10211 (2002).
[CrossRef]

2001 (4)

T. Kikukawa, T. Kato, H. Shingai, and H. Utsunomiya, “High-density read-only memory disc with super resolution reflective layer,” Jpn. J. Appl. Phys. 40,1624–1628 (2001).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78,685–687 (2001).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jap. J. Appl. Phys. 40,4101–4102 (2001).
[CrossRef]

1998 (1)

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73,2078–2080 (1998).
[CrossRef]

1996 (1)

H. Awano, S. Ohnuki, H. Shirai, and N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69,4257–4259 (1996).
[CrossRef]

1994 (1)

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, and V. M. Shalaev, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72,4149–4152 (1994).
[CrossRef] [PubMed]

1993 (1)

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32,5210–5213 (1993)
[CrossRef]

1992 (2)

1985 (1)

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical spectroscopy: Image recording with resolution lambda /20,” Appl. Phys. Lett. 44,651–653 (1984).
[CrossRef]

1972 (1)

E.A. Ash and G. Nicholls, “ Super-resolution aperture scanning microscope,” Nature 237,510–512 (1972)
[CrossRef] [PubMed]

1928 (1)

E. H. Synge, “An application of piezoelectricity to microscopy,” Philos. Mag. 6,356–362 (1928).

Aratani, K.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32,5210–5213 (1993)
[CrossRef]

Ash, E.A.

E.A. Ash and G. Nicholls, “ Super-resolution aperture scanning microscope,” Nature 237,510–512 (1972)
[CrossRef] [PubMed]

Atoda, N.

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73,2078–2080 (1998).
[CrossRef]

Awano, H.

H. Awano, S. Ohnuki, H. Shirai, and N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69,4257–4259 (1996).
[CrossRef]

Büchel, D.

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
[CrossRef]

Chang, C.-J.

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

Chang, H. H.

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys., Part 1 42,1000–1004 (2003).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jap. J. Appl. Phys. 40,4101–4102 (2001).
[CrossRef]

Chen, B.-M.

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys., Part 1 42,1000–1004 (2003).
[CrossRef]

Chen, K. H.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

Chen, K.-H.

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78,685–687 (2001).
[CrossRef]

Chiang, H.-H.

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

Chong, T. C.

J. M. Ji, L. P. Shi, K. G. Lim, X. S. Miao, H. X. Yang, and T. C. Chong, “Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure,” Jpn. J. Appl. Phys. 44,3620–3622 (2005).
[CrossRef]

L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, “Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,” J. Appl. Phys. 91,10209–10211 (2002).
[CrossRef]

Chu, T. C.

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Enhanced resolution induced by random silver nanoparticles in near-field optical disks,” Opt. Commun. 246,561–567 (2005).
[CrossRef]

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Near- and far-field optical properties of embedded scatters in AgOx-type super-resolution near-field structures,” Scanning, 26,102–105 (2004).

Courjon, D.

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical spectroscopy: Image recording with resolution lambda /20,” Appl. Phys. Lett. 44,651–653 (1984).
[CrossRef]

Depasse, F.

Fang, J. W.

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jap. J. Appl. Phys. 45,1383–1384 (2006)..
[CrossRef]

Fu, Y. H.

Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai, and D. P. Tsai, “Nonlinear optical properties of the Au-SiO nanocomposite superresolution near-field thin film,” Jpn. J. Appl. Phys. 43,5020–5023 (2004).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

Fukaya, T.

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys. 43,L88–L90 (2004).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
[CrossRef]

Fukumoto, A.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32,5210–5213 (1993)
[CrossRef]

Gan, F.

F. Zhang, W. Xu, Y. Wang, and F. Gan, “Static optical recording properties of super-resolution near-field structure with Bismuth mask layer,” Jpn. J. Appl. Phys. 43,7802–7806 (2004).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Inc., Singapore,1996).

Ho, F. H.

Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai, and D. P. Tsai, “Nonlinear optical properties of the Au-SiO nanocomposite superresolution near-field thin film,” Jpn. J. Appl. Phys. 43,5020–5023 (2004).
[CrossRef]

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys., Part 1 42,1000–1004 (2003).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jap. J. Appl. Phys. 40,4101–4102 (2001).
[CrossRef]

Hsu, S.-P.

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

Hsu, W.-C.

Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai, and D. P. Tsai, “Nonlinear optical properties of the Au-SiO nanocomposite superresolution near-field thin film,” Jpn. J. Appl. Phys. 43,5020–5023 (2004).
[CrossRef]

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

Hung, T.-T.

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

Ji, J. M.

J. M. Ji, L. P. Shi, K. G. Lim, X. S. Miao, H. X. Yang, and T. C. Chong, “Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure,” Jpn. J. Appl. Phys. 44,3620–3622 (2005).
[CrossRef]

Kaneko, M.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32,5210–5213 (1993)
[CrossRef]

Kao, T. S.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

Kato, T.

T. Kikukawa, T. Kato, H. Shingai, and H. Utsunomiya, “High-density read-only memory disc with super resolution reflective layer,” Jpn. J. Appl. Phys. 40,1624–1628 (2001).
[CrossRef]

Kikukawa, T.

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, “Rigid bubble bit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,” Appl. Phys. Lett. 81,4697–4699 (2002).
[CrossRef]

T. Kikukawa, T. Kato, H. Shingai, and H. Utsunomiya, “High-density read-only memory disc with super resolution reflective layer,” Jpn. J. Appl. Phys. 40,1624–1628 (2001).
[CrossRef]

Kovacs, J.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, and V. M. Shalaev, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72,4149–4152 (1994).
[CrossRef] [PubMed]

Kuo, P. C.

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

Kuwahara, M.

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys. 43,L88–L90 (2004).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical spectroscopy: Image recording with resolution lambda /20,” Appl. Phys. Lett. 44,651–653 (1984).
[CrossRef]

Liao, A.

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jap. J. Appl. Phys. 45,1383–1384 (2006)..
[CrossRef]

Lim, K. G.

J. M. Ji, L. P. Shi, K. G. Lim, X. S. Miao, H. X. Yang, and T. C. Chong, “Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure,” Jpn. J. Appl. Phys. 44,3620–3622 (2005).
[CrossRef]

Lin, W. C.

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jap. J. Appl. Phys. 45,1383–1384 (2006)..
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78,685–687 (2001).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
[CrossRef]

Lin, W. Y.

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jap. J. Appl. Phys. 40,4101–4102 (2001).
[CrossRef]

Lin, Y. H.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys., Part 1 42,1000–1004 (2003).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jap. J. Appl. Phys. 40,4101–4102 (2001).
[CrossRef]

Liu, W.-C.

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Enhanced resolution induced by random silver nanoparticles in near-field optical disks,” Opt. Commun. 246,561–567 (2005).
[CrossRef]

M.-Y. Ng and W.-C. Liu, “Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles,” Opt. Exp. 13,9422–9430 (2005).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, “Surface plasmon effects on the far-field signals of AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys. 43,4713–4717 (2004).
[CrossRef]

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Near- and far-field optical properties of embedded scatters in AgOx-type super-resolution near-field structures,” Scanning, 26,102–105 (2004).

W.-C. Liu and D. P. Tsai, “Nonlinear near-field optical effects of the AgOx-Type super-resolution near-field structure,” Jpn. J. Appl. Phys. 42, Part 1,1031–1032 (2003).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jap. J. Appl. Phys. 40,4101–4102 (2001).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78,685–687 (2001).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge,1995)

Miao, X. S.

J. M. Ji, L. P. Shi, K. G. Lim, X. S. Miao, H. X. Yang, and T. C. Chong, “Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure,” Jpn. J. Appl. Phys. 44,3620–3622 (2005).
[CrossRef]

L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, “Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,” J. Appl. Phys. 91,10209–10211 (2002).
[CrossRef]

Moskovits, M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, and V. M. Shalaev, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72,4149–4152 (1994).
[CrossRef] [PubMed]

Nakano, T.

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys. 43,L88–L90 (2004).
[CrossRef]

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, “Rigid bubble bit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,” Appl. Phys. Lett. 81,4697–4699 (2002).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73,2078–2080 (1998).
[CrossRef]

Ng, M.-Y.

M.-Y. Ng and W.-C. Liu, “Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles,” Opt. Exp. 13,9422–9430 (2005).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, “Surface plasmon effects on the far-field signals of AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys. 43,4713–4717 (2004).
[CrossRef]

Nicholls, G.

E.A. Ash and G. Nicholls, “ Super-resolution aperture scanning microscope,” Nature 237,510–512 (1972)
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

Ohnuki, S.

H. Awano, S. Ohnuki, H. Shirai, and N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69,4257–4259 (1996).
[CrossRef]

Ohta, N.

H. Awano, S. Ohnuki, H. Shirai, and N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69,4257–4259 (1996).
[CrossRef]

Ono, M.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32,5210–5213 (1993)
[CrossRef]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical spectroscopy: Image recording with resolution lambda /20,” Appl. Phys. Lett. 44,651–653 (1984).
[CrossRef]

Prasad, P. N.

P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc., Hoboken, New Jersey,2004).
[CrossRef]

Shalaev, V. M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, and V. M. Shalaev, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72,4149–4152 (1994).
[CrossRef] [PubMed]

Shi, L. P.

J. M. Ji, L. P. Shi, K. G. Lim, X. S. Miao, H. X. Yang, and T. C. Chong, “Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure,” Jpn. J. Appl. Phys. 44,3620–3622 (2005).
[CrossRef]

L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, “Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,” J. Appl. Phys. 91,10209–10211 (2002).
[CrossRef]

Shima, T.

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys. 43,L88–L90 (2004).
[CrossRef]

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, “Rigid bubble bit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,” Appl. Phys. Lett. 81,4697–4699 (2002).
[CrossRef]

Shinbori, S.

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
[CrossRef]

Shingai, H.

T. Kikukawa, T. Kato, H. Shingai, and H. Utsunomiya, “High-density read-only memory disc with super resolution reflective layer,” Jpn. J. Appl. Phys. 40,1624–1628 (2001).
[CrossRef]

Shirai, H.

H. Awano, S. Ohnuki, H. Shirai, and N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69,4257–4259 (1996).
[CrossRef]

Synge, E. H.

E. H. Synge, “An application of piezoelectricity to microscopy,” Philos. Mag. 6,356–362 (1928).

Tan, P. K.

L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, “Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,” J. Appl. Phys. 91,10209–10211 (2002).
[CrossRef]

Tominaga, J.

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys. 43,L88–L90 (2004).
[CrossRef]

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, “Rigid bubble bit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,” Appl. Phys. Lett. 81,4697–4699 (2002).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73,2078–2080 (1998).
[CrossRef]

Tsai, D. P.

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jap. J. Appl. Phys. 45,1383–1384 (2006)..
[CrossRef]

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Enhanced resolution induced by random silver nanoparticles in near-field optical disks,” Opt. Commun. 246,561–567 (2005).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, “Surface plasmon effects on the far-field signals of AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys. 43,4713–4717 (2004).
[CrossRef]

Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai, and D. P. Tsai, “Nonlinear optical properties of the Au-SiO nanocomposite superresolution near-field thin film,” Jpn. J. Appl. Phys. 43,5020–5023 (2004).
[CrossRef]

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Near- and far-field optical properties of embedded scatters in AgOx-type super-resolution near-field structures,” Scanning, 26,102–105 (2004).

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys., Part 1 42,1000–1004 (2003).
[CrossRef]

W.-C. Liu and D. P. Tsai, “Nonlinear near-field optical effects of the AgOx-Type super-resolution near-field structure,” Jpn. J. Appl. Phys. 42, Part 1,1031–1032 (2003).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78,685–687 (2001).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jap. J. Appl. Phys. 40,4101–4102 (2001).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, and V. M. Shalaev, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72,4149–4152 (1994).
[CrossRef] [PubMed]

Tsai, S.-Y.

Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai, and D. P. Tsai, “Nonlinear optical properties of the Au-SiO nanocomposite superresolution near-field thin film,” Jpn. J. Appl. Phys. 43,5020–5023 (2004).
[CrossRef]

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

Tseng, M.-R.

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

Utsunomiya, H.

T. Kikukawa, T. Kato, H. Shingai, and H. Utsunomiya, “High-density read-only memory disc with super resolution reflective layer,” Jpn. J. Appl. Phys. 40,1624–1628 (2001).
[CrossRef]

Vigoureux, J. M.

Wang, S.-Y.

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys., Part 1 42,1000–1004 (2003).
[CrossRef]

Wang, Y.

F. Zhang, W. Xu, Y. Wang, and F. Gan, “Static optical recording properties of super-resolution near-field structure with Bismuth mask layer,” Jpn. J. Appl. Phys. 43,7802–7806 (2004).
[CrossRef]

Wang, Z.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, and V. M. Shalaev, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72,4149–4152 (1994).
[CrossRef] [PubMed]

Wen, C.-Y.

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78,685–687 (2001).
[CrossRef]

Wolf, E.

Wu, C. C.

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jap. J. Appl. Phys. 45,1383–1384 (2006)..
[CrossRef]

Wu, C. T.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

Xu, W.

F. Zhang, W. Xu, Y. Wang, and F. Gan, “Static optical recording properties of super-resolution near-field structure with Bismuth mask layer,” Jpn. J. Appl. Phys. 43,7802–7806 (2004).
[CrossRef]

Yang, H. X.

J. M. Ji, L. P. Shi, K. G. Lim, X. S. Miao, H. X. Yang, and T. C. Chong, “Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure,” Jpn. J. Appl. Phys. 44,3620–3622 (2005).
[CrossRef]

Yao, H. B.

L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, “Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,” J. Appl. Phys. 91,10209–10211 (2002).
[CrossRef]

Yasuda, K.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32,5210–5213 (1993)
[CrossRef]

Zhang, F.

F. Zhang, W. Xu, Y. Wang, and F. Gan, “Static optical recording properties of super-resolution near-field structure with Bismuth mask layer,” Jpn. J. Appl. Phys. 43,7802–7806 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

H. Awano, S. Ohnuki, H. Shirai, and N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69,4257–4259 (1996).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73,2078–2080 (1998).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical spectroscopy: Image recording with resolution lambda /20,” Appl. Phys. Lett. 44,651–653 (1984).
[CrossRef]

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, “Rigid bubble bit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer,” Appl. Phys. Lett. 81,4697–4699 (2002).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78,685–687 (2001).
[CrossRef]

J. Appl. Phys. (2)

L. P. Shi, T. C. Chong, H. B. Yao, P. K. Tan, and X. S. Miao, “Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer,” J. Appl. Phys. 91,10209–10211 (2002).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89,6139–6144 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jap. J. Appl. Phys. (2)

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jap. J. Appl. Phys. 45,1383–1384 (2006)..
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jap. J. Appl. Phys. 40,4101–4102 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (10)

W.-C. Liu and D. P. Tsai, “Nonlinear near-field optical effects of the AgOx-Type super-resolution near-field structure,” Jpn. J. Appl. Phys. 42, Part 1,1031–1032 (2003).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, “Surface plasmon effects on the far-field signals of AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys. 43,4713–4717 (2004).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a Super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,“ Jpn. J. Appl. Phys. 42,1029–1030 (2003).
[CrossRef]

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32,5210–5213 (1993)
[CrossRef]

F. Zhang, W. Xu, Y. Wang, and F. Gan, “Static optical recording properties of super-resolution near-field structure with Bismuth mask layer,” Jpn. J. Appl. Phys. 43,7802–7806 (2004).
[CrossRef]

Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai, and D. P. Tsai, “Nonlinear optical properties of the Au-SiO nanocomposite superresolution near-field thin film,” Jpn. J. Appl. Phys. 43,5020–5023 (2004).
[CrossRef]

H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang, and P. C. Kuo, “Thermal and optical properties of organic dyes for duper-resolution recordable disks,” Jpn. J. Appl. Phys. 42,997–999 (2003).
[CrossRef]

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys. 43,L88–L90 (2004).
[CrossRef]

T. Kikukawa, T. Kato, H. Shingai, and H. Utsunomiya, “High-density read-only memory disc with super resolution reflective layer,” Jpn. J. Appl. Phys. 40,1624–1628 (2001).
[CrossRef]

J. M. Ji, L. P. Shi, K. G. Lim, X. S. Miao, H. X. Yang, and T. C. Chong, “Enhanced scattering of random-distribution nanoparticles and evanescent field in super-resolution near-field structure,” Jpn. J. Appl. Phys. 44,3620–3622 (2005).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys., Part 1 42,1000–1004 (2003).
[CrossRef]

Nature (1)

E.A. Ash and G. Nicholls, “ Super-resolution aperture scanning microscope,” Nature 237,510–512 (1972)
[CrossRef] [PubMed]

Opt. Commun. (1)

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Enhanced resolution induced by random silver nanoparticles in near-field optical disks,” Opt. Commun. 246,561–567 (2005).
[CrossRef]

Opt. Exp. (1)

M.-Y. Ng and W.-C. Liu, “Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles,” Opt. Exp. 13,9422–9430 (2005).
[CrossRef]

Philos. Mag. (1)

E. H. Synge, “An application of piezoelectricity to microscopy,” Philos. Mag. 6,356–362 (1928).

Phys. Rev. Lett. (1)

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, and V. M. Shalaev, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72,4149–4152 (1994).
[CrossRef] [PubMed]

Scanning, (1)

T. C. Chu, W.-C. Liu, and D. P. Tsai, “Near- and far-field optical properties of embedded scatters in AgOx-type super-resolution near-field structures,” Scanning, 26,102–105 (2004).

Other (5)

S. Kawata, M. Ohtsu, and M. Irie, ed., Nano-Optics (Springer, Berlin Heidelberg,2002).

M. Ohtsu, ed., Near-Field Nano/Atom Optics and Technology (Springer, Tokyo,1998).
[CrossRef]

P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc., Hoboken, New Jersey,2004).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Inc., Singapore,1996).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge,1995)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Model of the near-field optical disk with a random nanostructure.

Fig. 2
Fig. 2

Illustration of readout contrast in spatial frequency domain: (a) Aperture size D is close Gaussian beam width a. (b) Aperture size D is much smaller than the beam width a.

Fig. 3
Fig. 3

Readout contrast signals of analytical results (solid line) and numerical results (mark) with various aperture size for (a) for normal transmitting (kx = 0) cases and (b) N.A. = 0.6 cases.

Fig. 4
Fig. 4

Numerical readout contrast signals of dilute case for (a) kx = 0, and (b) N.A. = 0.6 cases. The coverage rate is 65%.

Fig. 5
Fig. 5

(a) Waveform of single frequency case for kx = 0 and D = 0.1λ ; (b) Numerical waveform of two-frequency case for kx = 0 and D = 0.1λ .

Fig. 5
Fig. 5

A realistic model of near-field optical disk with random nanostructures.

Fig. 6
Fig. 6

Readout contrasts of numerical results for N.A. = 0.6 for a model of near-field optical disk.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

A ( k x ) = ʃ U x 0 exp ( i k x x ) dx ,
U x z = ʃ A ( k x ) exp ( i ( k x x + k z z ) ) d k x ,
I ( k x ) = A ( k x ) 2 .
I ( k x ) = 1 4 a π 7 2 [ ʃ e x ' 2 a 2 G ( x ' ) F ( x ' ) e i k x x ' dx ' ] * [ ʃ e x 2 a 2 G ( x ) F ( x ) e i k x x dx ] ,
G ( x ) = 1 2 ( 1 + cos ( gx ) ) ,
G ( x ) = 1 2 ( 1 cos ( gx ) ) .
Δ I ( k x ) = 1 4 a π 7 2 ʃ ʃ dxdx ' e x 2 x ' 2 a 2 ( cos ( gx ) + cos ( gx ' ) ) F ( x ) F ( x ' ) e i k x ( x x ' ) .
Δ I ( k x ) = 1 4 a π 7 2 ʃ ʃ dxdx ' e x 2 x ' 2 a 2 ( cos ( gx ) + cos ( gx ' ) ) F ( x ) F ( x ' ) e i k x ( x x ' ) .
= 1 4 a π 7 2 e g 2 a 2 8 { h 2 [ exp ( a 2 ( k x g 2 ) 2 2 ) + exp ( a 2 ( k x + g 2 ) 2 2 ) ]
+ σ 2 l 2 a 2 + l 2 [ exp ( a 2 l 2 ( k x g 2 ) 2 2 ( 2 a 2 + l 2 ) ) + exp ( a 2 l 2 ( k x + g 2 ) 2 2 ( 2 a 2 + l 2 ) ) ] } .
Δ I 2 ( k x ) = ( 1 4 a π 7 2 ) 2 ʃ ʃ ʃ ʃ d x 1 d x 1 ' d x 2 d x 2 ' e x 1 2 x 1 ' 2 x 2 2 x 2 ' 2 a 2 ( cos ( g x 1 ) + cos ( g x 1 ' ) )
· ( cos ( g x 2 ) + cos ( g x 2 ' ) ) e i k x ( x 1 x 1 ' + x 2 x 2 ' ) F ( x 1 ) F ( x 1 ' ) F ( x 2 ) F ( x 2 ' ) .
F ( x 1 ) F ( x 1 ' ) F ( x 2 ) F ( x 2 ' ) = i , j , l , m F x 1 x i F ( x 1 ' , x j ) F x 2 x l F ( x 2 ' , x m ) ,
Δ I 2 ( k x ) = i , j , l , m Δ I 2 k x x i x j x l x m .
Δ I 2 ( k x ) = i , j , l , m ʃ ʃ ʃ ʃ d x i d x j d x l d x m Δ I 2 k x x i x j x l x m P ( x i ) P ( x j ) P ( x l ) P ( x m )
= C ʃ d x i Δ I 2 k x x i = x j = x l = x m P ( x i ) + O ( C 2 ) ,
F ( x i ) = i = 1 N e ( x x i ) 2 D 2 ,
Δ I 2 ( k x ) = aD 4 π 3 ( a 2 + D 2 ) ( e a 2 D 2 ( k x + g 2 ) 2 2 ( a 2 + D 2 ) + e a 2 D 2 ( k x g 2 ) 2 2 ( a 2 + D 2 ) )
· [ ( a 2 + D 2 ) 2 3 2 D [ e g 2 a 2 4 + e g 2 a 2 D 2 4 ( a 2 + D 2 ) ] ] 1 2 .
G ( x ) = 1 2 ( 1 + cos ( g ( x + l ) ) ) .
I l x i = 1 4 π 5 2 ( a D 2 a 2 + D 2 ) const · + cos ( g ( a 2 x i a 2 + D 2 + l ) ) · e 2 x i 2 a 2 D 2 ( k x + g ) 2 4 a 2 D 2 k x 2 4 ( a 2 + D 2 ) + cos ( g ( a 2 x i a 2 + D 2 + l ) ) · e 2 x i 2 a 2 D 2 ( k x g ) 2 4 a 2 D 2 k x 2 4 ( a 2 + D 2 ) + cos ( 2 g ( a 2 x i a 2 + D 2 + l ) ) · e 2 x i 2 a 2 D 2 ( k x + g ) 2 4 a 2 D 2 ( k x g ) 2 4 ( a 2 + D 2 )
I 2 ( l ) ~ e 11 a 2 D 2 g 2 16 ( a 2 + D 2 ) ( e a 2 D 2 ( k x + g 4 ) 2 ( a 2 + D 2 ) + e a 2 D 2 ( k x g 4 ) 2 ( a 2 + D 2 ) )
· ( cos ( 3 g · l ) e 9 a 4 g 2 16 ( a 2 + D 2 ) + cos ( g · l ) e a 4 g 2 16 ( a 2 + D 2 ) ) + O ( e a 2 g 2 4 ) .

Metrics