Abstract

Holographic or diffractive optical components are widely implemented using spatial light modulators within optical tweezers to form multiple, and/or modified traps. We show that by further modifying the hologram design to account for residual aberrations, the fidelity of the focused beams can be significantly improved, quantified by a spot sharpness metric. However, the impact this improvement has on the quality of the optical trap depends upon the particle size. For particle diameters on the order of 1 μm, aberration correction can improve the trap performance metric, which is the ratio of the mean square displacement of a corrected trap to an uncorrected trap, in excess of 25%, but for larger particles the trap performance is not unduly affected by the aberrations typically encountered in commercial spatial light modulators.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. Cell Robotics International Inc. (Albuquerque, USA); P.A.L.M. GmBH (Bernried, Germany); Arrxy Inc. (Chicago, USA).
  3. J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemporary Physics 43, 241-258 (2002).
    [CrossRef]
  4. S. M. Block, D. F. Blair, and H. C. Berg, "Compliance Of Bacterial Flagella Measured With Optical Tweezers," Nature 338, 514-518 (1989).
    [CrossRef] [PubMed]
  5. J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single Myosin Molecule Mechanics - Piconewton Forces and Nanometer Steps," Nature 368, 113-119 (1994).
    [CrossRef] [PubMed]
  6. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
    [CrossRef] [PubMed]
  7. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  8. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
    [CrossRef]
  9. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  10. K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by Multiple Optical Traps Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993).
    [CrossRef] [PubMed]
  11. J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement And Force Produced By A Single Myosin Head," Nature 378, 209-212 (1995).
    [CrossRef] [PubMed]
  12. P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
    [CrossRef] [PubMed]
  13. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475-5480 (2004).
    [CrossRef] [PubMed]
  14. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
    [CrossRef]
  15. T. Ota, S. Kawata, T. Sugiura, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Dynamic axial-position control of a laser-trapped particle by wave-front modification," Opt. Lett. 28, 465-467 (2003).
    [CrossRef] [PubMed]
  16. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
    [CrossRef]
  17. K. Ladavac and D. G. Grier, "Microoptomechanical pumps assembled and driven by holographic optical vortex arrays," Opt. Express 12, 1144-1149 (2004).
    [CrossRef] [PubMed]
  18. www.physics.gla.ac.uk/Optics/projects, Submitted to Appl. Opt. 2005.
  19. K. Visscher, S. P. Gross, and S. M. Block, "Construction of multiple-beam optical traps with nanometer- resolution position sensing," IEEE J. Quantum Electron. 2, 1066-1076 (1996).
    [CrossRef]
  20. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005).
    [CrossRef] [PubMed]
  21. M. Born and E. Wolf, Principles of optics, 7th edition (Cambridge University Press, Cambridge, 1999).
  22. J. R. Fienup and J. J. Miller, "Aberration correction by maximizing generalized sharpness metrics," J. Opt. Soc. Am. A 20, 609-620 (2003).
    [CrossRef]
  23. R. A. Muller and A. Buffington, "Real-time correction of atmospherically degraded telescope images through image sharpening," J. Opt. Soc. Am. 64, 1200-1210 (1974).
    [CrossRef]

2005

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005).
[CrossRef] [PubMed]

2004

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

K. Ladavac and D. G. Grier, "Microoptomechanical pumps assembled and driven by holographic optical vortex arrays," Opt. Express 12, 1144-1149 (2004).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475-5480 (2004).
[CrossRef] [PubMed]

2003

2002

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemporary Physics 43, 241-258 (2002).
[CrossRef]

2000

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

1997

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

1996

K. Visscher, S. P. Gross, and S. M. Block, "Construction of multiple-beam optical traps with nanometer- resolution position sensing," IEEE J. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

1995

J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement And Force Produced By A Single Myosin Head," Nature 378, 209-212 (1995).
[CrossRef] [PubMed]

1994

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single Myosin Molecule Mechanics - Piconewton Forces and Nanometer Steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

1993

K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by Multiple Optical Traps Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993).
[CrossRef] [PubMed]

1989

S. M. Block, D. F. Blair, and H. C. Berg, "Compliance Of Bacterial Flagella Measured With Optical Tweezers," Nature 338, 514-518 (1989).
[CrossRef] [PubMed]

1986

1974

Arlt, J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Ashkin, A.

Berg, H. C.

S. M. Block, D. F. Blair, and H. C. Berg, "Compliance Of Bacterial Flagella Measured With Optical Tweezers," Nature 338, 514-518 (1989).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Blackburn, P.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Blair, D. F.

S. M. Block, D. F. Blair, and H. C. Berg, "Compliance Of Bacterial Flagella Measured With Optical Tweezers," Nature 338, 514-518 (1989).
[CrossRef] [PubMed]

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

K. Visscher, S. P. Gross, and S. M. Block, "Construction of multiple-beam optical traps with nanometer- resolution position sensing," IEEE J. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

S. M. Block, D. F. Blair, and H. C. Berg, "Compliance Of Bacterial Flagella Measured With Optical Tweezers," Nature 338, 514-518 (1989).
[CrossRef] [PubMed]

Booth, M. J.

Brakenhoff, G. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by Multiple Optical Traps Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993).
[CrossRef] [PubMed]

Buffington, A.

Burns, J. E.

J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement And Force Produced By A Single Myosin Head," Nature 378, 209-212 (1995).
[CrossRef] [PubMed]

Chu, S.

Cooper, J.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475-5480 (2004).
[CrossRef] [PubMed]

Courtial, J.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Dziedzic, J. M.

Fienup, J. R.

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single Myosin Molecule Mechanics - Piconewton Forces and Nanometer Steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Girkin, J.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Goksor, M.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Grier, D. G.

Gross, S. P.

K. Visscher, S. P. Gross, and S. M. Block, "Construction of multiple-beam optical traps with nanometer- resolution position sensing," IEEE J. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Hanstorp, D.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Hossack, W. J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Isaacs, N.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Jordan, P.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475-5480 (2004).
[CrossRef] [PubMed]

Juskaitis, R.

Kawata, S.

Kendrickjones, J.

J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement And Force Produced By A Single Myosin Head," Nature 378, 209-212 (1995).
[CrossRef] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Krol, J. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by Multiple Optical Traps Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993).
[CrossRef] [PubMed]

Laczik, Z. J.

Ladavac, K.

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Leach, J.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

Lee, S. H.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Miller, J. J.

Molloy, J. E.

J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemporary Physics 43, 241-258 (2002).
[CrossRef]

J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement And Force Produced By A Single Myosin Head," Nature 378, 209-212 (1995).
[CrossRef] [PubMed]

Muller, R. A.

Neil, M. A. A.

Ota, T.

Padgett, M.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475-5480 (2004).
[CrossRef] [PubMed]

Padgett, M. J.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemporary Physics 43, 241-258 (2002).
[CrossRef]

Polin, M.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Roichman, Y.

Simmons, R. M.

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single Myosin Molecule Mechanics - Piconewton Forces and Nanometer Steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

Sinclair, G.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475-5480 (2004).
[CrossRef] [PubMed]

Spudich, J. A.

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single Myosin Molecule Mechanics - Piconewton Forces and Nanometer Steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

Sugiura, T.

Theofanidou, E.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Tregear, R. T.

J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement And Force Produced By A Single Myosin Head," Nature 378, 209-212 (1995).
[CrossRef] [PubMed]

Visscher, K.

K. Visscher, S. P. Gross, and S. M. Block, "Construction of multiple-beam optical traps with nanometer- resolution position sensing," IEEE J. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by Multiple Optical Traps Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993).
[CrossRef] [PubMed]

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

White, D. C. S.

J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement And Force Produced By A Single Myosin Head," Nature 378, 209-212 (1995).
[CrossRef] [PubMed]

Wilson, L.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Wilson, T.

Wright, A.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Biophys. J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Contemporary Physics

J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemporary Physics 43, 241-258 (2002).
[CrossRef]

Cytometry

K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by Multiple Optical Traps Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

K. Visscher, S. P. Gross, and S. M. Block, "Construction of multiple-beam optical traps with nanometer- resolution position sensing," IEEE J. Quantum Electron. 2, 1066-1076 (1996).
[CrossRef]

J. Mod. Opt.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Lab On A Chip

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Nature

J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement And Force Produced By A Single Myosin Head," Nature 378, 209-212 (1995).
[CrossRef] [PubMed]

S. M. Block, D. F. Blair, and H. C. Berg, "Compliance Of Bacterial Flagella Measured With Optical Tweezers," Nature 338, 514-518 (1989).
[CrossRef] [PubMed]

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single Myosin Molecule Mechanics - Piconewton Forces and Nanometer Steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Commun.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. Born and E. Wolf, Principles of optics, 7th edition (Cambridge University Press, Cambridge, 1999).

www.physics.gla.ac.uk/Optics/projects, Submitted to Appl. Opt. 2005.

Cell Robotics International Inc. (Albuquerque, USA); P.A.L.M. GmBH (Bernried, Germany); Arrxy Inc. (Chicago, USA).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Sharpness and performance metrics for a 0.8 μm bead as a function of: (a,d) Z22 aberration, (b,e) Z22 aberration, (c,f) and versus scaled changes in the linear combination of the two aberration terms.

Fig. 2.
Fig. 2.

Holograms used to correct relative aberrations. (a) The linear combination of (b) Z22 aberration and (c) Z22 aberration. The linear combination hologram, (a), was the corrective hologram used in the later experiments. The black and white areas correspond to a phase of 0 and 2π while the grey areas represent a phase of π.

Fig. 3.
Fig. 3.

Laser focal spots for: (a) uncorrected spot (c) and corrected spot. (b,d) These show the same focussed laser spots with the three sized microspheres 0.8, 2 and 5 μm spheres superimposed on them. The uncorrected laser spot falls outside the 0.8 μm diameter bead.

Fig. 4.
Fig. 4.

Particle displacements for uncorrected and corrected traps for particle sizes of: (a,b) 0.8 μm (c,d) 2 μm, and (e,f) 5 μm. The superimposed ellipses show the root mean-square displacements. The corrected traps have circular RMS displacements giving a more uniform trap.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M p = r 2 c r 2 u = k u k c
M s = ( Σ ij I ij ) 2 Σ ij I ij 2 ,

Metrics