Abstract

Raman and Brillouin scattering are normally quite distinct processes that take place when light is resonantly scattered by, respectively, optical and acoustic phonons. We show how few-GHz acoustic phonons acquire many of the same characteristics as optical phonons when they are tightly trapped, transversely and close to modal cut-off, inside the wavelength-scale core of an air-glass photonic crystal fiber (PCF). The result is an optical scattering effect that closely resembles Raman scattering, though at much lower frequencies. We use photoacoustic techniques to probe the effect experimentally and finite element modelling to explain the results. We also show by numerical modelling that the cladding structure supports two phononic band gaps that contribute to the confinement of sound in the core.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, D. Culverhouse, and P. St. J. Russell, "The acousto-optic effect in single mode fiber tapers and couplers," J. Lightwave Technol. 14, 2519-2529 (1996)
    [CrossRef]
  2. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, "Confinement of acoustical vibrations in a semiconductor planar phonon cavity," Phys. Rev. Lett. 89, 227402 (2002).
    [CrossRef] [PubMed]
  3. P. St. J. Russell, "Light in a tight space: enhancing matter-light interactions using photonic crystals," Proc. Conf. Nonlinear Optics(Optical Society of America) 79, 377-379 (2002).
  4. T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas and E. L. Thomas, "Hypersonic phononic crystals," Phys. Rev. Lett. 94, 115501 (2005).
    [CrossRef] [PubMed]
  5. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  6. P. Dainese, N. Joly, E. J. H. Davies, J. C. Knight, and P. St. J. Russell, and H. L. Fragnito "Stimulated Brillouin scattering in small-core PCF," in Proceedings of Conference on Lasers & Electro-Optics CLEO’04 (2004).
  7. P. St. J. Russell, E. Marin, A. Diez, and A. B. Movchan, "Sonic band gaps in PCF preforms: enhancing the interaction of sound and light," Opt. Express 11, 2555-2560 (2003).
    [CrossRef] [PubMed]
  8. V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
    [CrossRef]
  9. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, "Electrostrictive mechanism of soliton interaction in optical fibers," Opt. Lett. 15, 314-316 (1990).
    [CrossRef] [PubMed]
  10. L. du Mouza, Y. Jaouën, and C. Chabran, "Transverse Brillouin effect characterization in optical fibers and its geometrical aspects," IEEE Photon. Technol. Lett. 10, 1455-1457 (1998)
    [CrossRef]
  11. R. M. Shelby, M. D. Levenson and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 315244-5252 (1985)
    [CrossRef]
  12. N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, "Forward Brillouin scattering in holey fibers," IEEE Photon. Technol. Lett. 18, (412-414) 2006
    [CrossRef]
  13. R. A. Waldron, "Some problems in the theory of guided microsonic waves," IEEE Trans. Microwave Theory & Techniques MTT-17, 893-904 (1969).
    [CrossRef]
  14. R. N. Thurston, "Elastic waves in rods and clad rods," J. Acoust. Soc. Am. 64, 1-37 (1978).
    [CrossRef]
  15. D. Culverhouse, F. Farahi and P.St.J. Russell, "Experimental observation of forward SBS in dual-mode single-core fiber," Electron. Lett. 26, 1195-1197 (1990).
    [CrossRef]
  16. P. St. J. Russell, D. Culverhouse, and F. Farahi, "Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers," IEEE J. Quant. Electron. 27, 836-842 (1991).
    [CrossRef]
  17. J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1985).
  18. M. Wilm, K. Khelif, S. Ballandras, V. Laude and B. Djafari-Rouhani, "Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,'" Phys. Rev. E 67, 065602 (2003).
    [CrossRef]
  19. S. Guenneau and A. B. Movchan, "Analysis of elastic band structures for oblique incidence,' Archive for Rational Mechanics and Analysis,  171, 129-150 (2004).
    [CrossRef]
  20. A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).
  21. C. Krischer, "Optical measurements of ultrasonic attenuation and reflection losses in fused silica," J. Acoust. Soc. Am. 48, 1086-1092 (1970)
    [CrossRef]
  22. D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, "Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers," arXiv:quant-ph/0512044 v1, 6 Dec 2005.

2006 (1)

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, "Forward Brillouin scattering in holey fibers," IEEE Photon. Technol. Lett. 18, (412-414) 2006
[CrossRef]

2005 (2)

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas and E. L. Thomas, "Hypersonic phononic crystals," Phys. Rev. Lett. 94, 115501 (2005).
[CrossRef] [PubMed]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

2004 (1)

S. Guenneau and A. B. Movchan, "Analysis of elastic band structures for oblique incidence,' Archive for Rational Mechanics and Analysis,  171, 129-150 (2004).
[CrossRef]

2003 (3)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

M. Wilm, K. Khelif, S. Ballandras, V. Laude and B. Djafari-Rouhani, "Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,'" Phys. Rev. E 67, 065602 (2003).
[CrossRef]

P. St. J. Russell, E. Marin, A. Diez, and A. B. Movchan, "Sonic band gaps in PCF preforms: enhancing the interaction of sound and light," Opt. Express 11, 2555-2560 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, "Confinement of acoustical vibrations in a semiconductor planar phonon cavity," Phys. Rev. Lett. 89, 227402 (2002).
[CrossRef] [PubMed]

P. St. J. Russell, "Light in a tight space: enhancing matter-light interactions using photonic crystals," Proc. Conf. Nonlinear Optics(Optical Society of America) 79, 377-379 (2002).

1998 (1)

L. du Mouza, Y. Jaouën, and C. Chabran, "Transverse Brillouin effect characterization in optical fibers and its geometrical aspects," IEEE Photon. Technol. Lett. 10, 1455-1457 (1998)
[CrossRef]

1996 (1)

T. A. Birks, D. Culverhouse, and P. St. J. Russell, "The acousto-optic effect in single mode fiber tapers and couplers," J. Lightwave Technol. 14, 2519-2529 (1996)
[CrossRef]

1991 (1)

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers," IEEE J. Quant. Electron. 27, 836-842 (1991).
[CrossRef]

1990 (2)

D. Culverhouse, F. Farahi and P.St.J. Russell, "Experimental observation of forward SBS in dual-mode single-core fiber," Electron. Lett. 26, 1195-1197 (1990).
[CrossRef]

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, "Electrostrictive mechanism of soliton interaction in optical fibers," Opt. Lett. 15, 314-316 (1990).
[CrossRef] [PubMed]

1985 (1)

R. M. Shelby, M. D. Levenson and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 315244-5252 (1985)
[CrossRef]

1978 (1)

R. N. Thurston, "Elastic waves in rods and clad rods," J. Acoust. Soc. Am. 64, 1-37 (1978).
[CrossRef]

1970 (1)

C. Krischer, "Optical measurements of ultrasonic attenuation and reflection losses in fused silica," J. Acoust. Soc. Am. 48, 1086-1092 (1970)
[CrossRef]

1969 (1)

R. A. Waldron, "Some problems in the theory of guided microsonic waves," IEEE Trans. Microwave Theory & Techniques MTT-17, 893-904 (1969).
[CrossRef]

Ballandras, S.

M. Wilm, K. Khelif, S. Ballandras, V. Laude and B. Djafari-Rouhani, "Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,'" Phys. Rev. E 67, 065602 (2003).
[CrossRef]

Bayer, P. W.

R. M. Shelby, M. D. Levenson and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 315244-5252 (1985)
[CrossRef]

Benchabane, S.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Birks, T. A.

T. A. Birks, D. Culverhouse, and P. St. J. Russell, "The acousto-optic effect in single mode fiber tapers and couplers," J. Lightwave Technol. 14, 2519-2529 (1996)
[CrossRef]

Bruchhausen, A.

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, "Confinement of acoustical vibrations in a semiconductor planar phonon cavity," Phys. Rev. Lett. 89, 227402 (2002).
[CrossRef] [PubMed]

Chabran, C.

L. du Mouza, Y. Jaouën, and C. Chabran, "Transverse Brillouin effect characterization in optical fibers and its geometrical aspects," IEEE Photon. Technol. Lett. 10, 1455-1457 (1998)
[CrossRef]

Culverhouse, D.

T. A. Birks, D. Culverhouse, and P. St. J. Russell, "The acousto-optic effect in single mode fiber tapers and couplers," J. Lightwave Technol. 14, 2519-2529 (1996)
[CrossRef]

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers," IEEE J. Quant. Electron. 27, 836-842 (1991).
[CrossRef]

D. Culverhouse, F. Farahi and P.St.J. Russell, "Experimental observation of forward SBS in dual-mode single-core fiber," Electron. Lett. 26, 1195-1197 (1990).
[CrossRef]

Dianov, E. M.

Diez, A.

Djafari-Rouhani, B.

M. Wilm, K. Khelif, S. Ballandras, V. Laude and B. Djafari-Rouhani, "Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,'" Phys. Rev. E 67, 065602 (2003).
[CrossRef]

du Mouza, L.

L. du Mouza, Y. Jaouën, and C. Chabran, "Transverse Brillouin effect characterization in optical fibers and its geometrical aspects," IEEE Photon. Technol. Lett. 10, 1455-1457 (1998)
[CrossRef]

Dudley, J. M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Fainstein, A.

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, "Confinement of acoustical vibrations in a semiconductor planar phonon cavity," Phys. Rev. Lett. 89, 227402 (2002).
[CrossRef] [PubMed]

Farahi, F.

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers," IEEE J. Quant. Electron. 27, 836-842 (1991).
[CrossRef]

D. Culverhouse, F. Farahi and P.St.J. Russell, "Experimental observation of forward SBS in dual-mode single-core fiber," Electron. Lett. 26, 1195-1197 (1990).
[CrossRef]

Fytas, G.

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas and E. L. Thomas, "Hypersonic phononic crystals," Phys. Rev. Lett. 94, 115501 (2005).
[CrossRef] [PubMed]

Gorishnyy, T.

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas and E. L. Thomas, "Hypersonic phononic crystals," Phys. Rev. Lett. 94, 115501 (2005).
[CrossRef] [PubMed]

Guenneau, S.

S. Guenneau and A. B. Movchan, "Analysis of elastic band structures for oblique incidence,' Archive for Rational Mechanics and Analysis,  171, 129-150 (2004).
[CrossRef]

Jaouën, Y.

L. du Mouza, Y. Jaouën, and C. Chabran, "Transverse Brillouin effect characterization in optical fibers and its geometrical aspects," IEEE Photon. Technol. Lett. 10, 1455-1457 (1998)
[CrossRef]

Jusserand, B.

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, "Confinement of acoustical vibrations in a semiconductor planar phonon cavity," Phys. Rev. Lett. 89, 227402 (2002).
[CrossRef] [PubMed]

Khelif, A.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Khelif, K.

M. Wilm, K. Khelif, S. Ballandras, V. Laude and B. Djafari-Rouhani, "Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,'" Phys. Rev. E 67, 065602 (2003).
[CrossRef]

Kibler, B.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Krischer, C.

C. Krischer, "Optical measurements of ultrasonic attenuation and reflection losses in fused silica," J. Acoust. Soc. Am. 48, 1086-1092 (1970)
[CrossRef]

Laude, V.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

M. Wilm, K. Khelif, S. Ballandras, V. Laude and B. Djafari-Rouhani, "Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,'" Phys. Rev. E 67, 065602 (2003).
[CrossRef]

Levenson, M. D.

R. M. Shelby, M. D. Levenson and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 315244-5252 (1985)
[CrossRef]

Luchnikov, A. V.

Maillotte, H.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Maldovan, M.

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas and E. L. Thomas, "Hypersonic phononic crystals," Phys. Rev. Lett. 94, 115501 (2005).
[CrossRef] [PubMed]

Marin, E.

Movchan, A. B.

S. Guenneau and A. B. Movchan, "Analysis of elastic band structures for oblique incidence,' Archive for Rational Mechanics and Analysis,  171, 129-150 (2004).
[CrossRef]

P. St. J. Russell, E. Marin, A. Diez, and A. B. Movchan, "Sonic band gaps in PCF preforms: enhancing the interaction of sound and light," Opt. Express 11, 2555-2560 (2003).
[CrossRef] [PubMed]

Mussot, A.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Nakazono, A.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, "Forward Brillouin scattering in holey fibers," IEEE Photon. Technol. Lett. 18, (412-414) 2006
[CrossRef]

Pilipetskii, A. N.

Russell, P. St. J.

P. St. J. Russell, E. Marin, A. Diez, and A. B. Movchan, "Sonic band gaps in PCF preforms: enhancing the interaction of sound and light," Opt. Express 11, 2555-2560 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, "Light in a tight space: enhancing matter-light interactions using photonic crystals," Proc. Conf. Nonlinear Optics(Optical Society of America) 79, 377-379 (2002).

T. A. Birks, D. Culverhouse, and P. St. J. Russell, "The acousto-optic effect in single mode fiber tapers and couplers," J. Lightwave Technol. 14, 2519-2529 (1996)
[CrossRef]

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers," IEEE J. Quant. Electron. 27, 836-842 (1991).
[CrossRef]

Russell, P.St.J.

D. Culverhouse, F. Farahi and P.St.J. Russell, "Experimental observation of forward SBS in dual-mode single-core fiber," Electron. Lett. 26, 1195-1197 (1990).
[CrossRef]

Shelby, R. M.

R. M. Shelby, M. D. Levenson and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 315244-5252 (1985)
[CrossRef]

Shibata, N.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, "Forward Brillouin scattering in holey fibers," IEEE Photon. Technol. Lett. 18, (412-414) 2006
[CrossRef]

Starodumov, A. N.

Sylvestre, T.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Taguchi, N.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, "Forward Brillouin scattering in holey fibers," IEEE Photon. Technol. Lett. 18, (412-414) 2006
[CrossRef]

Tanaka, S.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, "Forward Brillouin scattering in holey fibers," IEEE Photon. Technol. Lett. 18, (412-414) 2006
[CrossRef]

Thierry-Mieg, V.

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, "Confinement of acoustical vibrations in a semiconductor planar phonon cavity," Phys. Rev. Lett. 89, 227402 (2002).
[CrossRef] [PubMed]

Thomas, E. L.

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas and E. L. Thomas, "Hypersonic phononic crystals," Phys. Rev. Lett. 94, 115501 (2005).
[CrossRef] [PubMed]

Thurston, R. N.

R. N. Thurston, "Elastic waves in rods and clad rods," J. Acoust. Soc. Am. 64, 1-37 (1978).
[CrossRef]

Trigo, M.

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, "Confinement of acoustical vibrations in a semiconductor planar phonon cavity," Phys. Rev. Lett. 89, 227402 (2002).
[CrossRef] [PubMed]

Ullal, C. K.

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas and E. L. Thomas, "Hypersonic phononic crystals," Phys. Rev. Lett. 94, 115501 (2005).
[CrossRef] [PubMed]

Waldron, R. A.

R. A. Waldron, "Some problems in the theory of guided microsonic waves," IEEE Trans. Microwave Theory & Techniques MTT-17, 893-904 (1969).
[CrossRef]

Wilm, M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

M. Wilm, K. Khelif, S. Ballandras, V. Laude and B. Djafari-Rouhani, "Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,'" Phys. Rev. E 67, 065602 (2003).
[CrossRef]

Archive for Rational Mechanics and Analysis (1)

S. Guenneau and A. B. Movchan, "Analysis of elastic band structures for oblique incidence,' Archive for Rational Mechanics and Analysis,  171, 129-150 (2004).
[CrossRef]

Electron. Lett. (1)

D. Culverhouse, F. Farahi and P.St.J. Russell, "Experimental observation of forward SBS in dual-mode single-core fiber," Electron. Lett. 26, 1195-1197 (1990).
[CrossRef]

IEEE J. Quant. Electron. (1)

P. St. J. Russell, D. Culverhouse, and F. Farahi, "Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers," IEEE J. Quant. Electron. 27, 836-842 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, "Forward Brillouin scattering in holey fibers," IEEE Photon. Technol. Lett. 18, (412-414) 2006
[CrossRef]

L. du Mouza, Y. Jaouën, and C. Chabran, "Transverse Brillouin effect characterization in optical fibers and its geometrical aspects," IEEE Photon. Technol. Lett. 10, 1455-1457 (1998)
[CrossRef]

IEEE Trans. Microwave Theory & Techniques (1)

R. A. Waldron, "Some problems in the theory of guided microsonic waves," IEEE Trans. Microwave Theory & Techniques MTT-17, 893-904 (1969).
[CrossRef]

J. Acoust. Soc. Am. (2)

R. N. Thurston, "Elastic waves in rods and clad rods," J. Acoust. Soc. Am. 64, 1-37 (1978).
[CrossRef]

C. Krischer, "Optical measurements of ultrasonic attenuation and reflection losses in fused silica," J. Acoust. Soc. Am. 48, 1086-1092 (1970)
[CrossRef]

J. Lightwave Technol. (1)

T. A. Birks, D. Culverhouse, and P. St. J. Russell, "The acousto-optic effect in single mode fiber tapers and couplers," J. Lightwave Technol. 14, 2519-2529 (1996)
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley and H. Maillotte, "Phononic band-gap guidance of acoustic modes in photonic crystal fibers," Phys. Rev. B 71, 045107 (2005).
[CrossRef]

R. M. Shelby, M. D. Levenson and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 315244-5252 (1985)
[CrossRef]

Phys. Rev. E (1)

M. Wilm, K. Khelif, S. Ballandras, V. Laude and B. Djafari-Rouhani, "Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,'" Phys. Rev. E 67, 065602 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, "Confinement of acoustical vibrations in a semiconductor planar phonon cavity," Phys. Rev. Lett. 89, 227402 (2002).
[CrossRef] [PubMed]

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas and E. L. Thomas, "Hypersonic phononic crystals," Phys. Rev. Lett. 94, 115501 (2005).
[CrossRef] [PubMed]

Proc. Conf. Nonlinear Optics (1)

P. St. J. Russell, "Light in a tight space: enhancing matter-light interactions using photonic crystals," Proc. Conf. Nonlinear Optics(Optical Society of America) 79, 377-379 (2002).

Science (1)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (4)

P. Dainese, N. Joly, E. J. H. Davies, J. C. Knight, and P. St. J. Russell, and H. L. Fragnito "Stimulated Brillouin scattering in small-core PCF," in Proceedings of Conference on Lasers & Electro-Optics CLEO’04 (2004).

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).

J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1985).

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, "Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers," arXiv:quant-ph/0512044 v1, 6 Dec 2005.

Supplementary Material (3)

» Media 1: MPG (560 KB)     
» Media 2: MPG (564 KB)     
» Media 3: MPG (564 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic dispersion relation for acoustic modes, illustrating the optical-phonon-like branch at zero acoustic wavevector and the phase-matching point at the intersection with the optical dispersion line.

Fig. 2.
Fig. 2.

Experimental setup used to perform photoacoustic pump-probe measurements. Inset: Pump modulation scheme. A CW external-cavity diode laser (~ 200 kHz linewidth) was amplitude-modulated using a lithium-niobate external modulator. A pulse generator produced 100 ps (FWHM) electrical pulses at 15 MHz repetition rate, which were then amplified using a wideband radio-frequency amplifier (26 GHz). The resulting optical pulses were then amplified in a 2W erbium doped fiber amplifier (EDFA), resulting in pulse energies of ~100 pJ. The CW probe was an external-cavity diode laser oscillating at 1530 nm (~ 200 kHz linewidth) with 10 mW of power.

Fig. 3.
Fig. 3.

(a) Scanning electron micrograph of the PCF cross-section; (b) zoomed image of the core, showing the orientation of the principal optical axes relative to the PCF structure. A polarimeter was used to characterize the polarization states of the principal axes; these were then compared with pictures of the fiber input and output faces, taken using a reflection microscope. The error bars indicate the experimental uncertainty.

Fig. 4.
Fig. 4.

Measured photoacoustic impulse response in PCF#2 (core diameter 1.22 μm). Inset: complementary signals obtained for right and left circular probe polarization.

Fig. 5.
Fig. 5.

Measured index modulation due to photoacoustic excitation of acoustic modes in small core PCFs. The responses were recorded for two PCFs with core radius & length (a) PCF#2: 610 nm & 84 m; (b) PCF#1: 625 nm & 87 m. Insets: Fourier transforms of the impulse responses (amplitudes).

Fig. 6.
Fig. 6.

(a) Spontaneous forward Brillouin scattering spectrum for PCF#2. The spectrum was obtained using a polarization spectroscopy technique [11]. The vertical scale is logarithmic and the 0 dB level corresponds to the shot-noise limit. The instrument spectral response had 1 MHz electronic resolution. (b) Comparison of the spontaneous forward Brillouin scattering spectra for PCF#1 and PCF#2. Both present a dominant peak around 2 GHz, and in PCF#2 this peak is split into 3 sub-peaks possibly due to structure asymmetries.

Fig. 7.
Fig. 7.

Plot of the even (Signal(+)) and odd (Signal(-)) spectra for the numerically-evaluated acoustic modes of PCF#2. The vertical scale is linear (in arbitrary units) and signals weaker than 1% of the highest peak in each spectrum were removed from the plot. The strongest peaks are identified in each spectrum (m being the mode number) and movies for the in-plane acoustic displacements are shown in Fig. 8.

Fig. 8.
Fig. 8.

Movies of the in-plane displacement for the acoustic modes that yield the strongest index perturbation in both Signal(+) and Signal(-), as identified in Fig. 7. [Media 1] [Media 2] [Media 3]

Fig. 9.
Fig. 9.

(a) Phononic band structure (in-plane displacements) for a crystal formed from the unit cell highlighted in (b), with a web thickness of 110 nm. Three clear phononic band gaps are present at 1.8 GHz, 2.38 GHz and 3.93 GHz (grey). (b) Crystal structure used to calculate the phononic band structure for in-plane acoustic displacements at β ac = 0 .

Fig. 10.
Fig. 10.

The position of the phononic band gap edges as a function of web thickness for the tiled structure in Fig. 9. The vertical lines represent frequencies that can propagate in the structure. The grey line connecting the band edges is just a guide for the eye.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( β pump , ω pump ) ( β scatt , ω scatt ) = ± ( β ph , ω ph )
β ph = n ac c ω ph 2 ω co 2
ω ac = ω co 1 ( n o n ac ) 2 ω co .
V = V ̄ [ 1 ± 2 πL λ Δ n ( t ) ]

Metrics