Abstract

A high-quality spectrally isolated hollow beam is produced through a nonlinear-optical transformation of Ti: sapphire laser pulses in a higher order mode of a photonic-crystal fiber (PCF). Instead of a doughnut shape, typical of hollow beams produced by other methods, the far-field image of the hollow-beam PCF output features perfect sixth-order rotation symmetry, dictated by the symmetry of the PCF structure. The frequency of the PCF-generated hollow beam can be tuned by varying the input beam parameters, making a few-mode PCF a convenient and flexible tool for the guiding and trapping of atoms and creation of all-fiber optical tweezers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, "Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap," J. Mod. Opt. 47, 2755-2767 (2000).
  2. J. Yin, Y. Zhu, and Y. Wang, "Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling," Phys. Lett. A 248, 309-318 (1998).
    [CrossRef]
  3. K. Bongs, S. Burger, S. Dettmer, D. Hellweg, J. Arlt, W. Ertmer, and K. Sengstock, "Waveguide for Bose-Einstein condensates," Phys. Rev. A 63, 31 602 (2001)
    [CrossRef]
  4. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61,569-582 (1992).
    [CrossRef] [PubMed]
  5. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283,1689-1695 (1999).
    [CrossRef] [PubMed]
  6. N. Simpson, K. Dholakia, L. Allen, and M. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997)
    [CrossRef] [PubMed]
  7. L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
    [CrossRef] [PubMed]
  8. J. Christou, V. Tikhonenko, Y. Kivshar, and B. Luther-Davies, "Vortex soliton motion and steering," Opt. Lett. 21, 1649-1651 (1996)
    [CrossRef] [PubMed]
  9. C. Tamm and C. Weiss, "Bistability and optical switching of spatial patterns in a laser," J. Opt. Soc. Am. B 7, 1034-1040 (1990)
    [CrossRef]
  10. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Opt. Commun. 112,321-327 (1994).
    [CrossRef]
  11. Y. Shin, K. Kim, J. Kim, H. Noh, W. Jhe, K. Oh, and U. Paek, "Diffraction-limited dark laser spot produced by a hollow optical fiber, " Opt. Lett. 26, 119-121 (2001)
    [CrossRef]
  12. N. Heckenberg, R. McDuff, C. Smith, and A. White, "Generation of optical phase singularities by computer-generated holograms," Opt. Lett. 17, 221-223 (1992)
    [CrossRef] [PubMed]
  13. M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999)
    [CrossRef]
  14. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, "Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%, " Opt. Lett. 27, 1351-1353 (2002)
    [CrossRef]
  15. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  16. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  17. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  18. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  19. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  20. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416,233-237 (2002).
    [CrossRef] [PubMed]
  21. A. M. Zheltikov, "Nonlinear optics of microstructure fibers," Phys. Uspekhi 47,69-98 (2004)
    [CrossRef]
  22. A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).
  23. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet," Modelling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56, (2000).
    [CrossRef]
  24. S. Konorov, E. Serebryannikov, A. Zheltikov, P. Zhou, A. Tarasevitch, and D. von der Linde, "Mode-controlled colors from microstructure fibers," Opt. Express 12, 730-735 (2004);
    [CrossRef] [PubMed]
  25. G. P. Agrawal, Nonlinear Fiber Optics (San Diego, Academic, 2001).
  26. P. A. Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426-439 (1990).
    [CrossRef] [PubMed]
  27. N. Akhmediev, M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  28. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]

2004

2003

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

2002

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416,233-237 (2002).
[CrossRef] [PubMed]

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, "Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%, " Opt. Lett. 27, 1351-1353 (2002)
[CrossRef]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

2001

Y. Shin, K. Kim, J. Kim, H. Noh, W. Jhe, K. Oh, and U. Paek, "Diffraction-limited dark laser spot produced by a hollow optical fiber, " Opt. Lett. 26, 119-121 (2001)
[CrossRef]

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
[CrossRef] [PubMed]

2000

M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, "Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap," J. Mod. Opt. 47, 2755-2767 (2000).

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet," Modelling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56, (2000).
[CrossRef]

1999

M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999)
[CrossRef]

D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283,1689-1695 (1999).
[CrossRef] [PubMed]

1998

J. Yin, Y. Zhu, and Y. Wang, "Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling," Phys. Lett. A 248, 309-318 (1998).
[CrossRef]

1997

1996

1995

N. Akhmediev, M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

1994

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Opt. Commun. 112,321-327 (1994).
[CrossRef]

1992

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61,569-582 (1992).
[CrossRef] [PubMed]

N. Heckenberg, R. McDuff, C. Smith, and A. White, "Generation of optical phase singularities by computer-generated holograms," Opt. Lett. 17, 221-223 (1992)
[CrossRef] [PubMed]

1990

C. Tamm and C. Weiss, "Bistability and optical switching of spatial patterns in a laser," J. Opt. Soc. Am. B 7, 1034-1040 (1990)
[CrossRef]

P. A. Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

Akhmediev, N.

N. Akhmediev, M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Allen, L.

Arlt, J.

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61,569-582 (1992).
[CrossRef] [PubMed]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Opt. Commun. 112,321-327 (1994).
[CrossRef]

Bennet, P. J.

Birks, T. A.

Broderick, N. G. R.

Bryant, P. E.

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
[CrossRef] [PubMed]

Chen, H. H.

P. A. Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

Christou, J.

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Opt. Commun. 112,321-327 (1994).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Dholakia, K.

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
[CrossRef] [PubMed]

N. Simpson, K. Dholakia, L. Allen, and M. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997)
[CrossRef] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Druzhinina, V.

M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, "Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap," J. Mod. Opt. 47, 2755-2767 (2000).

Dukel’skii, K. V.

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Fedotov, A. B.

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Gan, X.

Ganic, D.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Grimm, R.

M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, "Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap," J. Mod. Opt. 47, 2755-2767 (2000).

Gu, M.

Hain, M.

Haist, T.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Hammes, M.

M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, "Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap," J. Mod. Opt. 47, 2755-2767 (2000).

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416,233-237 (2002).
[CrossRef] [PubMed]

Heckenberg, N.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416,233-237 (2002).
[CrossRef] [PubMed]

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Jhe, W.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Karlsson, M.

N. Akhmediev, M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Kim, J.

Kim, K.

Kivshar, Y.

Knight, J. C.

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Kondrat’ev, Yu. N.

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Konorov, S.

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Opt. Commun. 112,321-327 (1994).
[CrossRef]

Lee, Y. C.

P. A. Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

Luther-Davies, B.

MacDonald, M.

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
[CrossRef] [PubMed]

Manek-Hönninger, I.

M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, "Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap," J. Mod. Opt. 47, 2755-2767 (2000).

Mann, T. P. M.

McDuff, R.

Mehta, D.

D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283,1689-1695 (1999).
[CrossRef] [PubMed]

Monro, T. M.

Moslener, U.

M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, "Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap," J. Mod. Opt. 47, 2755-2767 (2000).

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Noh, H.

Oh, K.

Ortigosa-Blanch, A.

Padgett, M.

Paek, U.

Paterson, L.

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
[CrossRef] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

Reicherter, M.

Richardson, D. J.

Rief, M.

D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283,1689-1695 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Rychtarik, D.

M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, "Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap," J. Mod. Opt. 47, 2755-2767 (2000).

Serebryannikov, E.

Shevandin, V. S.

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Shin, Y.

Sibbett, W.

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
[CrossRef] [PubMed]

Simmons, R. M.

D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283,1689-1695 (1999).
[CrossRef] [PubMed]

Simpson, N.

Smirnov, V. B.

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Smith, C.

Smith, D. A.

D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283,1689-1695 (1999).
[CrossRef] [PubMed]

Somalingam, S.

Spudich, J. A.

D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283,1689-1695 (1999).
[CrossRef] [PubMed]

Stankovic, S.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Tamm, C.

Tarasevitch, A.

Tarasevitch, A. P.

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Tikhonenko, V.

Tiziani, H.

Tschudi, T.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416,233-237 (2002).
[CrossRef] [PubMed]

von der Linde, D.

S. Konorov, E. Serebryannikov, A. Zheltikov, P. Zhou, A. Tarasevitch, and D. von der Linde, "Mode-controlled colors from microstructure fibers," Opt. Express 12, 730-735 (2004);
[CrossRef] [PubMed]

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Wadsworth, W. J.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Wagemann, E.

Wai, P. A.

P. A. Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

Wang, Y.

J. Yin, Y. Zhu, and Y. Wang, "Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling," Phys. Lett. A 248, 309-318 (1998).
[CrossRef]

Weiss, C.

White, A.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Opt. Commun. 112,321-327 (1994).
[CrossRef]

Yin, J.

J. Yin, Y. Zhu, and Y. Wang, "Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling," Phys. Lett. A 248, 309-318 (1998).
[CrossRef]

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Zheltikov, A.

Zheltikov, A. M.

A. M. Zheltikov, "Nonlinear optics of microstructure fibers," Phys. Uspekhi 47,69-98 (2004)
[CrossRef]

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Zhou, P.

S. Konorov, E. Serebryannikov, A. Zheltikov, P. Zhou, A. Tarasevitch, and D. von der Linde, "Mode-controlled colors from microstructure fibers," Opt. Express 12, 730-735 (2004);
[CrossRef] [PubMed]

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Zhu, Y.

J. Yin, Y. Zhu, and Y. Wang, "Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling," Phys. Lett. A 248, 309-318 (1998).
[CrossRef]

Biophys. J.

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61,569-582 (1992).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Mod. Opt.

M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, "Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap," J. Mod. Opt. 47, 2755-2767 (2000).

J. Opt. Soc. Am. B

J. Raman Spectrosc.

A. B. Fedotov, P. Zhou, A. P. Tarasevitch, K. V. Dukel’skii, Yu. N. Kondrat’ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, and A. M. Zheltikov, "Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing Spectroscopy," J. Raman Spectrosc. 33, 888-896 (2002).

Nature

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416,233-237 (2002).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Commun.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Opt. Commun. 112,321-327 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

J. Yin, Y. Zhu, and Y. Wang, "Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling," Phys. Lett. A 248, 309-318 (1998).
[CrossRef]

Phys. Rev. A

P. A. Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426-439 (1990).
[CrossRef] [PubMed]

N. Akhmediev, M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn," Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Phys. Uspekhi

A. M. Zheltikov, "Nonlinear optics of microstructure fibers," Phys. Uspekhi 47,69-98 (2004)
[CrossRef]

Science

D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283,1689-1695 (1999).
[CrossRef] [PubMed]

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other

K. Bongs, S. Burger, S. Dettmer, D. Hellweg, J. Arlt, W. Ertmer, and K. Sengstock, "Waveguide for Bose-Einstein condensates," Phys. Rev. A 63, 31 602 (2001)
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (San Diego, Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) An SEM image of the photonic-crystal fiber. (b) Group-velocity dispersion (GVD) as a function of radiation wavelength for the fundamental (1) and hollow-beam (2) PCF modes.

Fig. 2.
Fig. 2.

(a)–(c) Transverse field intensity profiles for (a) the fundamental and (b, c) hollow-beam PCF modes corresponding to a superposition of (b) HE21- and TM01-type modes and (c)TE01- and HE21-type modes. (d) The effective mode area for (1) the fundamental (inset 1) and (2) hollow-beam (inset 2) modes of the PCF calculated as a function of the radiation wavelength.

Fig. 3.
Fig. 3.

Spectral transformation of 60-fs Ti: sapphire laser pulses in the fundamental mode of the PCF: (a) the far-field beam profile of the PCF output and (b) the spectral intensity of the PCF output as a function of the radiation wavelength and the average power of the input field. The fiber length is 120 cm.

Fig. 4.
Fig. 4.

Spectral and beam-profile transformation of 60-fs Ti: sapphire laser pulses in the hollow-beam mode of the PCF: (a) the far-field beam profile of the PCF output and (b) the spectral intensity of the PCF output as a function of the radiation wavelength and the average power of the input field. The fiber length is 120 cm.

Fig. 5.
Fig. 5.

The spectra of the hollow-beam PCF output measured with two different input peak powers of 40-fs Ti: sapphire laser pulses: (1) 3 kW and (2) 30 kW. The inset shows the wavelength shift ∣Δλ∣ of the hollow-beam output relative to the central wavelength of the input pulse measured as a function of the input peak power.

Metrics