Abstract

We present a theoretical investigation of a novel all-optical method for electron beam gating via ponderomotive surface plasmon (SP) interaction. Using femtosecond optical pulses, large electric field gradient SP waves are launched on the surface of a metal film and selectively gate an external electron beam. It is shown that this method can generate electron pulses having similar durations as the laser pulse. The ultrashort electron packets are highly directional and examination of their spatial distribution reveals a large degree of spatial microbunching. Angle-resolved energy spectra of the electrons reveal that their final velocities are highly correlated with exit angle. Furthermore, it is demonstrated that the SP gating technique can be utilized for temporal characterization of ultrashort electron pulses with durations <100 fs.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72,545-591 (2000).
    [CrossRef]
  2. A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
    [CrossRef] [PubMed]
  3. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932-934 (2001).
    [CrossRef]
  4. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
    [CrossRef]
  5. J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
    [CrossRef] [PubMed]
  6. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An Atomic-Level View of Melting Using Femtosecond Electron Diffraction," Science 302, 1382-1385 (2003).
    [CrossRef] [PubMed]
  7. J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, "Clocking transient chemical changes by ultrafast electron diffraction," Nature 386,159-162 (1997).
    [CrossRef]
  8. J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003).
    [CrossRef]
  9. B. J. Siwick, A. A. Green, C. T. Hebeisen, R. J. D. Miller, "Characterization of ultrashort electron pulses by electron-laser pulse cross correlation," Opt. Lett. 301057-1059 (2005).
    [CrossRef] [PubMed]
  10. V. I. Balykin, M. V. Subbotin, and V. S. Letokhov, "Reflection of an electron beam by femtosecond light waves," Opt. Commun. 129177-183 (1996).
    [CrossRef]
  11. S. E. Irvine, A. Dechant, and A. Y. Elezzabi, "Generation of 0.4 keV femtosecond electron pulses using impulsively excited surface plasmons," Phys. Rev. Lett. 93, 184801 (2004).
    [CrossRef] [PubMed]
  12. S. E. Irvine and A. Y. Elezzabi, "Surface-plasmon-based electron acceleration," Phys. Rev. A 73, 013815 (2006).
    [CrossRef]
  13. S. E. Irvine and A. Y. Elezzabi, "Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses," Appl. Phys. Lett. 86, 264102 (2005).
    [CrossRef]
  14. A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).
  15. N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics. (Prentice Hall, New Jersey, 1993).
  16. A. R. Melnyk and J. R. Harrison, "Resonant Excitation of Plasmons in Thin Films by Electromagnetic Waves," Phys. Rev. Lett. 21, 85-88 (1968).
    [CrossRef]
  17. P. Agostini, J. Kupersztych, L. A. Lompre, G. Petite, and F. Yergeau, "Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization," Phys. Rev. A. 36, 4111-4114 (1987).
    [CrossRef] [PubMed]
  18. J. P. Girardeau-Montaut and C. Girardeau-Montaut, "Space-charge-limited current density as a function of electron flow duration in an emissive diode," J. Appl. Phys. 65, 2889-2895 (1989).
    [CrossRef]
  19. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "Ultrafast electron optics: Propagation dynamics of femtosecond electron packets," J. Appl. Phys. 92, 1643-1648 (2002).
    [CrossRef]

2006 (2)

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
[CrossRef] [PubMed]

S. E. Irvine and A. Y. Elezzabi, "Surface-plasmon-based electron acceleration," Phys. Rev. A 73, 013815 (2006).
[CrossRef]

2005 (2)

S. E. Irvine and A. Y. Elezzabi, "Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses," Appl. Phys. Lett. 86, 264102 (2005).
[CrossRef]

B. J. Siwick, A. A. Green, C. T. Hebeisen, R. J. D. Miller, "Characterization of ultrashort electron pulses by electron-laser pulse cross correlation," Opt. Lett. 301057-1059 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, "Generation of 0.4 keV femtosecond electron pulses using impulsively excited surface plasmons," Phys. Rev. Lett. 93, 184801 (2004).
[CrossRef] [PubMed]

2003 (2)

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An Atomic-Level View of Melting Using Femtosecond Electron Diffraction," Science 302, 1382-1385 (2003).
[CrossRef] [PubMed]

J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003).
[CrossRef]

2002 (1)

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "Ultrafast electron optics: Propagation dynamics of femtosecond electron packets," J. Appl. Phys. 92, 1643-1648 (2002).
[CrossRef]

2001 (1)

2000 (1)

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72,545-591 (2000).
[CrossRef]

1997 (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
[CrossRef]

J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, "Clocking transient chemical changes by ultrafast electron diffraction," Nature 386,159-162 (1997).
[CrossRef]

1996 (1)

V. I. Balykin, M. V. Subbotin, and V. S. Letokhov, "Reflection of an electron beam by femtosecond light waves," Opt. Commun. 129177-183 (1996).
[CrossRef]

1989 (1)

J. P. Girardeau-Montaut and C. Girardeau-Montaut, "Space-charge-limited current density as a function of electron flow duration in an emissive diode," J. Appl. Phys. 65, 2889-2895 (1989).
[CrossRef]

1987 (1)

P. Agostini, J. Kupersztych, L. A. Lompre, G. Petite, and F. Yergeau, "Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization," Phys. Rev. A. 36, 4111-4114 (1987).
[CrossRef] [PubMed]

1968 (1)

A. R. Melnyk and J. R. Harrison, "Resonant Excitation of Plasmons in Thin Films by Electromagnetic Waves," Phys. Rev. Lett. 21, 85-88 (1968).
[CrossRef]

Agostini, P.

P. Agostini, J. Kupersztych, L. A. Lompre, G. Petite, and F. Yergeau, "Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization," Phys. Rev. A. 36, 4111-4114 (1987).
[CrossRef] [PubMed]

Apolonski, A.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Balykin, V. I.

V. I. Balykin, M. V. Subbotin, and V. S. Letokhov, "Reflection of an electron beam by femtosecond light waves," Opt. Commun. 129177-183 (1996).
[CrossRef]

Blaszczyk, L.

J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003).
[CrossRef]

Brabec, T.

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72,545-591 (2000).
[CrossRef]

Burgdorfer, J.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Cao, J.

J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003).
[CrossRef]

J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, "Clocking transient chemical changes by ultrafast electron diffraction," Nature 386,159-162 (1997).
[CrossRef]

Dechant, A.

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, "Generation of 0.4 keV femtosecond electron pulses using impulsively excited surface plasmons," Phys. Rev. Lett. 93, 184801 (2004).
[CrossRef] [PubMed]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
[CrossRef]

Deyirmenjian, V. B.

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
[CrossRef] [PubMed]

Dombi, P.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Dwyer, J. R.

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An Atomic-Level View of Melting Using Femtosecond Electron Diffraction," Science 302, 1382-1385 (2003).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "Ultrafast electron optics: Propagation dynamics of femtosecond electron packets," J. Appl. Phys. 92, 1643-1648 (2002).
[CrossRef]

Elezzabi, A. Y.

S. E. Irvine and A. Y. Elezzabi, "Surface-plasmon-based electron acceleration," Phys. Rev. A 73, 013815 (2006).
[CrossRef]

S. E. Irvine and A. Y. Elezzabi, "Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses," Appl. Phys. Lett. 86, 264102 (2005).
[CrossRef]

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, "Generation of 0.4 keV femtosecond electron pulses using impulsively excited surface plasmons," Phys. Rev. Lett. 93, 184801 (2004).
[CrossRef] [PubMed]

Ernstorfer, R.

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
[CrossRef] [PubMed]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
[CrossRef]

Frey, H.

J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, "Clocking transient chemical changes by ultrafast electron diffraction," Nature 386,159-162 (1997).
[CrossRef]

Girardeau-Montaut, C.

J. P. Girardeau-Montaut and C. Girardeau-Montaut, "Space-charge-limited current density as a function of electron flow duration in an emissive diode," J. Appl. Phys. 65, 2889-2895 (1989).
[CrossRef]

Girardeau-Montaut, J. P.

J. P. Girardeau-Montaut and C. Girardeau-Montaut, "Space-charge-limited current density as a function of electron flow duration in an emissive diode," J. Appl. Phys. 65, 2889-2895 (1989).
[CrossRef]

Green, A. A.

Gu, X.

Hänsch, T. W.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Hao, Z.

J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003).
[CrossRef]

Harb, M.

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
[CrossRef] [PubMed]

Harrison, J. R.

A. R. Melnyk and J. R. Harrison, "Resonant Excitation of Plasmons in Thin Films by Electromagnetic Waves," Phys. Rev. Lett. 21, 85-88 (1968).
[CrossRef]

Hebeisen, C. T.

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
[CrossRef] [PubMed]

B. J. Siwick, A. A. Green, C. T. Hebeisen, R. J. D. Miller, "Characterization of ultrashort electron pulses by electron-laser pulse cross correlation," Opt. Lett. 301057-1059 (2005).
[CrossRef] [PubMed]

Holzwarth, R.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Ihee, H.

J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, "Clocking transient chemical changes by ultrafast electron diffraction," Nature 386,159-162 (1997).
[CrossRef]

Irvine, S. E.

S. E. Irvine and A. Y. Elezzabi, "Surface-plasmon-based electron acceleration," Phys. Rev. A 73, 013815 (2006).
[CrossRef]

S. E. Irvine and A. Y. Elezzabi, "Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses," Appl. Phys. Lett. 86, 264102 (2005).
[CrossRef]

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, "Generation of 0.4 keV femtosecond electron pulses using impulsively excited surface plasmons," Phys. Rev. Lett. 93, 184801 (2004).
[CrossRef] [PubMed]

Jordan, R. E.

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An Atomic-Level View of Melting Using Femtosecond Electron Diffraction," Science 302, 1382-1385 (2003).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "Ultrafast electron optics: Propagation dynamics of femtosecond electron packets," J. Appl. Phys. 92, 1643-1648 (2002).
[CrossRef]

Kakehata, M.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
[CrossRef]

Kau, D.

J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003).
[CrossRef]

Kimmel, M.

Krausz, F.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72,545-591 (2000).
[CrossRef]

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
[CrossRef]

Kupersztych, J.

P. Agostini, J. Kupersztych, L. A. Lompre, G. Petite, and F. Yergeau, "Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization," Phys. Rev. A. 36, 4111-4114 (1987).
[CrossRef] [PubMed]

Lemell, C.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Letokhov, V. S.

V. I. Balykin, M. V. Subbotin, and V. S. Letokhov, "Reflection of an electron beam by femtosecond light waves," Opt. Commun. 129177-183 (1996).
[CrossRef]

Lompre, L. A.

P. Agostini, J. Kupersztych, L. A. Lompre, G. Petite, and F. Yergeau, "Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization," Phys. Rev. A. 36, 4111-4114 (1987).
[CrossRef] [PubMed]

Melnyk, A. R.

A. R. Melnyk and J. R. Harrison, "Resonant Excitation of Plasmons in Thin Films by Electromagnetic Waves," Phys. Rev. Lett. 21, 85-88 (1968).
[CrossRef]

Miller, R. J. D.

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
[CrossRef] [PubMed]

B. J. Siwick, A. A. Green, C. T. Hebeisen, R. J. D. Miller, "Characterization of ultrashort electron pulses by electron-laser pulse cross correlation," Opt. Lett. 301057-1059 (2005).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An Atomic-Level View of Melting Using Femtosecond Electron Diffraction," Science 302, 1382-1385 (2003).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "Ultrafast electron optics: Propagation dynamics of femtosecond electron packets," J. Appl. Phys. 92, 1643-1648 (2002).
[CrossRef]

O'Shea, P.

Park, H.

J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003).
[CrossRef]

Paulus, G. G.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Petite, G.

P. Agostini, J. Kupersztych, L. A. Lompre, G. Petite, and F. Yergeau, "Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization," Phys. Rev. A. 36, 4111-4114 (1987).
[CrossRef] [PubMed]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
[CrossRef]

Siwick, B. J.

B. J. Siwick, A. A. Green, C. T. Hebeisen, R. J. D. Miller, "Characterization of ultrashort electron pulses by electron-laser pulse cross correlation," Opt. Lett. 301057-1059 (2005).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An Atomic-Level View of Melting Using Femtosecond Electron Diffraction," Science 302, 1382-1385 (2003).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "Ultrafast electron optics: Propagation dynamics of femtosecond electron packets," J. Appl. Phys. 92, 1643-1648 (2002).
[CrossRef]

Subbotin, M. V.

V. I. Balykin, M. V. Subbotin, and V. S. Letokhov, "Reflection of an electron beam by femtosecond light waves," Opt. Commun. 129177-183 (1996).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
[CrossRef]

Tao, C.

J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003).
[CrossRef]

Torizuka, K.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Trebino, R.

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932-934 (2001).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
[CrossRef]

Udem, T.

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Williamson, J. C.

J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, "Clocking transient chemical changes by ultrafast electron diffraction," Nature 386,159-162 (1997).
[CrossRef]

Yergeau, F.

P. Agostini, J. Kupersztych, L. A. Lompre, G. Petite, and F. Yergeau, "Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization," Phys. Rev. A. 36, 4111-4114 (1987).
[CrossRef] [PubMed]

Zewail, A. H.

J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, "Clocking transient chemical changes by ultrafast electron diffraction," Nature 386,159-162 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003).
[CrossRef]

S. E. Irvine and A. Y. Elezzabi, "Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses," Appl. Phys. Lett. 86, 264102 (2005).
[CrossRef]

J. Appl. Phys. (2)

J. P. Girardeau-Montaut and C. Girardeau-Montaut, "Space-charge-limited current density as a function of electron flow duration in an emissive diode," J. Appl. Phys. 65, 2889-2895 (1989).
[CrossRef]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "Ultrafast electron optics: Propagation dynamics of femtosecond electron packets," J. Appl. Phys. 92, 1643-1648 (2002).
[CrossRef]

Nature (1)

J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, "Clocking transient chemical changes by ultrafast electron diffraction," Nature 386,159-162 (1997).
[CrossRef]

Opt. Commun. (1)

V. I. Balykin, M. V. Subbotin, and V. S. Letokhov, "Reflection of an electron beam by femtosecond light waves," Opt. Commun. 129177-183 (1996).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

S. E. Irvine and A. Y. Elezzabi, "Surface-plasmon-based electron acceleration," Phys. Rev. A 73, 013815 (2006).
[CrossRef]

Phys. Rev. A. (1)

P. Agostini, J. Kupersztych, L. A. Lompre, G. Petite, and F. Yergeau, "Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization," Phys. Rev. A. 36, 4111-4114 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

A. R. Melnyk and J. R. Harrison, "Resonant Excitation of Plasmons in Thin Films by Electromagnetic Waves," Phys. Rev. Lett. 21, 85-88 (1968).
[CrossRef]

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, "Generation of 0.4 keV femtosecond electron pulses using impulsively excited surface plasmons," Phys. Rev. Lett. 93, 184801 (2004).
[CrossRef] [PubMed]

A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72,545-591 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997).
[CrossRef]

Science (1)

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An Atomic-Level View of Melting Using Femtosecond Electron Diffraction," Science 302, 1382-1385 (2003).
[CrossRef] [PubMed]

Ser. A (1)

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006).
[CrossRef] [PubMed]

Other (2)

A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).

N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics. (Prentice Hall, New Jersey, 1993).

Supplementary Material (1)

» Media 1: AVI (2464 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Arrangement for electron pulse gating using SP waves. (left) An external electron beam is directed toward a metal-coated prism surface at angleθ, measured from the surface normal. The electrons comprising the input beam are deflected and depart the interaction region at an angle α. Varying the delay between the launching of the SP and an incident electron packet allows the same SP-gating mechanism to be utilized for temporal characterization of electron pulses. (right) Potential experimental arrangement for realizing electron beam gating using SP waves, which consists of a laser source, an electron source, a timing mechanism to synchronize the optical and electron pulses, and an electron spectrometer for energy discrimination.

Fig. 2.
Fig. 2.

Trajectories of five test electrons as they interact with an SP wave having a peak electric field amplitude of ESP =7.4×109 V/cm. The test electrons are delayed with respect to the peak of ESP with launching times ofτe = -12 (orange), -6 (purple), 0 (blue), 6 (green) and 12 fs (red). Laser parameters: τp =30 fs, λ=800 nm, F=2.18 mJ/cm2.

Fig. 3.
Fig. 3.

Electrons interacting with the SP wave for various θ of (a) 75°, (b) 60°, (c) 45°, (d) 30°, (e) 15°, and (f) 0°. For each panel, two electron trajectories are plotted corresponding to the cases of K < USP (solid blue) and K > USP (dashed red). The arrows indicate the direction of the electrons as they approach and exit ESP . Laser parameters: τp =30 fs, λ=800 nm.

Fig. 4.
Fig. 4.

Comparison of threshold values of the ponderomotive potential required for electron deflection as calculated from the model (red circles) and Eq. (8) (solid blue line).

Fig. 5.
Fig. 5.

Snapshots of the SP-gating of an electron beam at various times ranging from -20 fs to 130 fs. The white arrow indicates the direction of the wave vector of the incident laser pulse, while the black arrow indicates the propagation direction of the electron beam. Laser parameters: τp =30 fs, λ=800 nm, F=2.18 mJ/cm2.

Fig. 6.
Fig. 6.

(a) Number of deflected electrons as a function of time at various sample locations at perpendicular distances of 1.0, 1.5, and 2.0 μm away from the metal film surface. (b) Variation of the FWHM of the electron packet as a function of distance away from the prism surface along a direction 22° from the surface normal. (c) Variation of the total number of deflected electrons as a function of distance away from the prism surface along a direction 22° away from the surface normal. (d) Number of deflected electrons as a function of time at two locations along the film surface for distances of 3.0 and 4.0 μm away from the center of the metal surface. Legends in (a) and (d) contain illustrations depicting the location of the detector with respect to the prism surface. It should be noted that in (a) and (d) the curves have been offset vertically for clarity. Laser parameters: τp =30 fs, λ=800 nm, F=2.18 mJ/cm2.

Fig. 7.
Fig. 7.

(a) Kinetic energy spectra of the sliced electron beam depicted in Fig. 6. The peak has a central value of 330 eV and a FWHM of 179 eV. The inset shows the angular distribution of the sliced electron beam and its relation to the surface of the prism. Directionality of the sliced beam is evidenced by the peak at 22°, which has an angular half-width of 21°. (b) Angle-resolved energy spectra reveal distinct energy bands that follow K~K (1+cot2 α) for various K values ranging from 204 to 417 eV. Laser parameters: τp =30 fs, λ=800 nm, F=2.18 mJ/cm2.

Fig. 8.
Fig. 8.

(2.4 MB) Movie of the SP-gating of an electron pulse at various times ranging from -20 fs to 130 fs for a relative delay of τ=0. The arrows indicate the direction of the propagation of the electron and optical pulses. Laser parameters: τp =30 fs, λ=800 nm, F=2.18 mJ/cm2.

Fig. 9.
Fig. 9.

Cross-correlation between an SP excited with a 30 fs optical pulse and a 50 fs electron pulse for various ESP of 3.7×109 V/cm, 7.4×109 V/cm, and 1.9×1010 V/cm. Laser parameters: τp =30 fs, λ=800 nm.

Fig. 10.
Fig. 10.

Cross-correlation between an SP excited with a 30 fs optical pulse and electron pulses with durations ranging from 5 to 200 fs. The resolution of the system determined from the 5 fs electron pulse is 77 fs. Laser parameters: τp =30 fs, λ=800 nm, F=2.18 mJ/cm2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Π ( t ) = Θ ( t + t 0 2 ) Θ ( t 0 2 t ) ,
t 0 = τ 0 2 In ( 2 ) In ( I 0 I th ) .
Q deflected ( τ ) α Π ( t ) ρ elec ( t + τ ) dt ,
H t = 1 μ 0 × E
E t = 1 ε × H ,
ε m ( ω ) = ε 0 ε 0 ω p 2 ω ( ω i v d ) ,
d v dt = e m e ( E + μ 0 v × H )
U TH = β e 2 ( E SP TH ) 2 4 m e ω 2 cos 2 θ ,

Metrics