Abstract

Propagation and interaction of surface plasmon polaritons (SPPs) excited in the wavelength range 700–860 nm with periodic triangular arrays of gold bumps placed on gold film surfaces are investigated using a collection near-field microscope. We observe the inhibition of SPP propagation into the arrays within a certain wavelength range, i.e., the band gap (BG) effect. We demonstrate also the SPP propagation along a 30° bent channel obtained by an adiabatic rotation of the periodic array of scatterers. Numerical simulations using the Lippmann-Schwinger integral equation method are presented and found in reasonable agreement with the experimental results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).
    [CrossRef]
  3. J. R. Krenn, J.-C. Weeber, "Surface plasmon polaritons in metal stripes and wires," Phil. Trans. R. Soc. London A 362,739-756 (2004).
    [CrossRef]
  4. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13,977-984 (2005).
    [CrossRef] [PubMed]
  5. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85,5833-5836 (2004).
    [CrossRef]
  6. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12,5481-5486 (2004).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
    [CrossRef] [PubMed]
  8. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, NJ, 1995).
  9. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77,2670-2673 (1996).
    [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79,1076-1078 (2001).
    [CrossRef]
  11. C. Marquart, S. I. Bozhevolnyi, and K. Leosson, "Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths," Opt. Express 13,3303-3309 (2005).
    [CrossRef] [PubMed]
  12. M. Kretschmann, "Phase diagrams of surface plasmon polaritonic crystals," Phys. Rev. B 68,125419 (2003).
    [CrossRef]
  13. T. Søndergaard and S. I. Bozhevolnyi, "Theoretical analysis of finite-size surface plasmon polariton band-gap structures," Phys. Rev. B 71,125429 (2005).
    [CrossRef]
  14. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol. 23,413-422 (2005).
    [CrossRef]
  15. A. Degiron and D. Smith, "Numerical simulations of long-range plasmons," Opt. Express 14,1611-1625 (2006).
    [CrossRef] [PubMed]
  16. P. Berini and J. Lu, "Curved long-range surface plasmon-polariton waveguides," Opt. Express 14,2365-2371 (2006).
    [CrossRef] [PubMed]
  17. J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, "Low-loss silicon-oninsulator photonic crystal waveguides," Electron. Lett. 38,274-275 (2002).
    [CrossRef]
  18. DME-DualScopeTM, Herlev, Denmark.
  19. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65-69 (2005).
    [CrossRef]
  20. A. Jugessur, L. Wu, A. Bakhtazad, A. Kirk, T. Krauss, and R. De La Rue, "Compact and integrated 2-D photonic crystal super-prism filter-device for wavelength demultiplexing applications," Opt. Express 14,1632-1642 (2006).
    [CrossRef] [PubMed]

2006

2005

2004

J. R. Krenn, J.-C. Weeber, "Surface plasmon polaritons in metal stripes and wires," Phil. Trans. R. Soc. London A 362,739-756 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85,5833-5836 (2004).
[CrossRef]

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12,5481-5486 (2004).
[CrossRef] [PubMed]

2003

M. Kretschmann, "Phase diagrams of surface plasmon polaritonic crystals," Phys. Rev. B 68,125419 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).
[CrossRef]

2002

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, "Low-loss silicon-oninsulator photonic crystal waveguides," Electron. Lett. 38,274-275 (2002).
[CrossRef]

2001

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79,1076-1078 (2001).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

1996

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77,2670-2673 (1996).
[CrossRef] [PubMed]

Arentoft, J.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, "Low-loss silicon-oninsulator photonic crystal waveguides," Electron. Lett. 38,274-275 (2002).
[CrossRef]

Baehr-Jones, T.

Bakhtazad, A.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77,2670-2673 (1996).
[CrossRef] [PubMed]

Berini, P.

Boltasseva,

Boltasseva, A.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, "Low-loss silicon-oninsulator photonic crystal waveguides," Electron. Lett. 38,274-275 (2002).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79,1076-1078 (2001).
[CrossRef]

Bozhevolnyi, S. I.

C. Marquart, S. I. Bozhevolnyi, and K. Leosson, "Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths," Opt. Express 13,3303-3309 (2005).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, "Theoretical analysis of finite-size surface plasmon polariton band-gap structures," Phys. Rev. B 71,125429 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85,5833-5836 (2004).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79,1076-1078 (2001).
[CrossRef]

Charbonneau, R.

De La Rue, R.

Degiron, A.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).
[CrossRef]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

Frandsen, L.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, "Low-loss silicon-oninsulator photonic crystal waveguides," Electron. Lett. 38,274-275 (2002).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65-69 (2005).
[CrossRef]

Hochberg, M.

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

Jugessur, A.

Kirk, A.

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77,2670-2673 (1996).
[CrossRef] [PubMed]

Krauss, T.

Krenn, J. R.

J. R. Krenn, J.-C. Weeber, "Surface plasmon polaritons in metal stripes and wires," Phil. Trans. R. Soc. London A 362,739-756 (2004).
[CrossRef]

Kretschmann, M.

M. Kretschmann, "Phase diagrams of surface plasmon polaritonic crystals," Phys. Rev. B 68,125419 (2003).
[CrossRef]

Kristensen, M.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, "Low-loss silicon-oninsulator photonic crystal waveguides," Electron. Lett. 38,274-275 (2002).
[CrossRef]

Lahoud, N.

Leosson, K.

C. Marquart, S. I. Bozhevolnyi, and K. Leosson, "Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths," Opt. Express 13,3303-3309 (2005).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85,5833-5836 (2004).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79,1076-1078 (2001).
[CrossRef]

Lu, J.

Marquart, C.

Mattiussi, G.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65-69 (2005).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85,5833-5836 (2004).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65-69 (2005).
[CrossRef]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77,2670-2673 (1996).
[CrossRef] [PubMed]

Scherer, A.

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

Smith, D.

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, "Theoretical analysis of finite-size surface plasmon polariton band-gap structures," Phys. Rev. B 71,125429 (2005).
[CrossRef]

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, "Low-loss silicon-oninsulator photonic crystal waveguides," Electron. Lett. 38,274-275 (2002).
[CrossRef]

Thorhauge, M.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, "Low-loss silicon-oninsulator photonic crystal waveguides," Electron. Lett. 38,274-275 (2002).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65-69 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79,1076-1078 (2001).
[CrossRef]

Walker, C.

Weeber, J.-C.

J. R. Krenn, J.-C. Weeber, "Surface plasmon polaritons in metal stripes and wires," Phil. Trans. R. Soc. London A 362,739-756 (2004).
[CrossRef]

Wu, L.

Appl. Phys. Lett.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79,1076-1078 (2001).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85,5833-5836 (2004).
[CrossRef]

Electron. Lett.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen, "Low-loss silicon-oninsulator photonic crystal waveguides," Electron. Lett. 38,274-275 (2002).
[CrossRef]

J. Lightwave Technol.

Nature (London)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424,824-830 (2003).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65-69 (2005).
[CrossRef]

Opt. Express

Phil. Trans. R. Soc. London A

J. R. Krenn, J.-C. Weeber, "Surface plasmon polaritons in metal stripes and wires," Phil. Trans. R. Soc. London A 362,739-756 (2004).
[CrossRef]

Phys. Rev. B

M. Kretschmann, "Phase diagrams of surface plasmon polaritonic crystals," Phys. Rev. B 68,125419 (2003).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, "Theoretical analysis of finite-size surface plasmon polariton band-gap structures," Phys. Rev. B 71,125429 (2005).
[CrossRef]

Phys. Rev. Lett.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77,2670-2673 (1996).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008-3011 (2001).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, NJ, 1995).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

DME-DualScopeTM, Herlev, Denmark.

Supplementary Material (2)

» Media 1: AVI (824 KB)     
» Media 2: AVI (1053 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experimental setup.

Fig. 2.
Fig. 2.

Design of the adiabatic bends of the triangular lattice having period 475 nm and being arranged in ΓM direction relative to the propagation direction of the incident SPP (from left to right). Both structures are sets of 60-nm-height gold bumps deposited on a 60-nm-thick gold film, and have a channel width of 4 lines of scatterers removed. (a) Structure A: the radius of curvature of the bend is 16 μm, square bumps are 133 nm on the side. (b) Structure B: the radius of curvature of the bend is 32 μm, square bumps are 166 nm on the side.

Fig. 3.
Fig. 3.

Shear-force topography (a) and near-field imaging of SPP interaction with the structure A obtained for different wavelengths: (b) 706 nm, (c) 750 nm, and (d) 825 nm. (e) Wavelength dependence of the SPP penetration depth obtained from the SNOM images.

Fig. 4.
Fig. 4.

(a) Shear-force topography and (b) near-field imaging of SPP interaction with the structure B obtained at the wavelength 713 nm. (c) Optical signal distribution along the channel, obtained by taking cross-sections perpendicular to the waveguide. (d) Four crosssections (2nd, 4th, 6th, and 13th), taken at different distances from the entrance to the waveguide and showing the SPP field confinement.

Fig. 5.
Fig. 5.

(Movie 823 KB) Electric field magnitude distributions obtained by numerical simulations for the penetration of the Gaussian SPP beam into the ΓM-oriented triangular lattice (see text for details) for different wavelengths: (a) 720 nm, (b) 760 nm, (c) 800 nm, (d) 840 nm. (e) Wavelength dependence of the SPP penetration depth obtained from the calculated field distributions (solid line) together with the experimental data (dashed line).

Fig. 6.
Fig. 6.

(Movie 1.02 MB) Theoretical electric field magnitude distributions of the Gaussian SPP beam interaction with the adiabatic bend of the ΓM-oriented lattice with the channel inside (structure B on Fig. 2(b)). Images obtained for different wavelengths: (a) 720 nm, (b) 760 nm, (c) 800 nm, (d) 840 nm. (e) Estimated transmission of the optical signal through the waveguide plotted versus SPP wavelength.

Metrics