Abstract

A new method based on an optical delay line structure is proposed for two-dimensional raster optical beam steering. For one-dimensional beam steering, the laser beam to be deflected is split into N co-directional sub-beams of equal intensity with the aid of a plane-parallel plate. These sub-beams experience a relative time delay, which translates into a phase difference, thus forming a phased array. When the laser wavelength is tuned, the relative phase varies and the far-field interference footprint can be steered across a receive plane. By employing two plane-parallel plates in series, the described scheme can be extended to produce a two-dimensional N × N array of sub-beams, allowing two-dimensional beam steering via wavelength tuning. In this case, wavelength tuning over a larger range leads to a linear deflection which repeats itself in a raster-like fashion. One direction of deflection repeats itself multiple times as wavelength is scanned over larger range, that is, a raster effect. In this paper, the principle is theoretically derived and formulated, and the preliminary experimental results with four sub-beams are presented.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Agile beam steering using phased-arraylike binary optics

Michael W. Farn
Appl. Opt. 33(22) 5151-5158 (1994)

High speed, high power one-dimensional beam steering from a 6-element optical phased array

W. Ronny Huang, Juan Montoya, Jan E. Kansky, Shawn M. Redmond, George W. Turner, and Antonio Sanchez-Rubio
Opt. Express 20(16) 17311-17318 (2012)

Spatial optical beam steering with an AlGaAs integrated phased array

F. Vasey, F. K. Reinhart, R. Houdré, and J. M. Stauffer
Appl. Opt. 32(18) 3220-3232 (1993)

References

  • View by:
  • |
  • |
  • |

  1. P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.
  2. K. H. Kudielka, A. Kalmar, and W. R. Leeb, “Design and breadboarding of a phased telescope array for free-space laser communications,” Proceeding of IEEE International Symposium on Phased Array Systems and Technology, (1996), pp. 419–424.
    [Crossref]
  3. D. Bushuev, D. Kedar, and S. Arnon, “Analyzing the performance of a nanosatellite cluster-detector array receiver for laser communication,” J. Lightwave Technol. 21, 447–455 (2003).
    [Crossref]
  4. A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites using an optical phased array antenna,” Opt. Eng. 42, No.7, 2015–2024 (2003).
    [Crossref]
  5. H. S. Hinton, “Photonic switching fabrics,” IEEE Communications Magazine 28, April 1990, 71–89.
    [Crossref]
  6. M. Yamaguchi, T. Yamamoto, K. Hirabayashi, S. Matsuo, and K. Koyabu, “High-density digital free-space photonic-switching fabrics using exciton absorption reflection-switch (EARS) arrays and microbeam optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 2, 47–54 (1996).
    [Crossref]
  7. T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
    [Crossref]
  8. J.-P. Herriau, A. Delboulbe, J.-P. Huignard, G. Roosen, and G. Pauliat, ”Optical-beam steering for fiber array using dynamic holography,” J. Lightwave Technol. 4, 905–907 (1986).
    [Crossref]
  9. B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” IEEE Aerospace Conference Proceedings 3, March 2004, 6–13.
  10. Y. Murakami, K. Inagaki, and Y. Karasawa, “Beam forming characteristics of a waveguide-type optical phased array antenna,” IEICE Trans. Commun. E80-B, 1997.
  11. K. Inagaki and Y. Karasawa, “Three-element fiber-type optical phased array antenna with high-speed two-dimensional optical beam steering,” Electron. Commun. Jpn. 82, 42–51 (1999).
    [Crossref]
  12. T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
    [Crossref]
  13. T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “High-speed optical FSK modulator for optical packet labeling,” J. Lightwave Technol. 23, 87–94 (2005).
    [Crossref]
  14. M. Toyoshima and K. Araki, Japan Patent Application for a “Beam splitting method,” No. 3069703, filed 24 Nov. 1999.

2005 (1)

2004 (2)

B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” IEEE Aerospace Conference Proceedings 3, March 2004, 6–13.

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
[Crossref]

2003 (2)

D. Bushuev, D. Kedar, and S. Arnon, “Analyzing the performance of a nanosatellite cluster-detector array receiver for laser communication,” J. Lightwave Technol. 21, 447–455 (2003).
[Crossref]

A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites using an optical phased array antenna,” Opt. Eng. 42, No.7, 2015–2024 (2003).
[Crossref]

1999 (1)

K. Inagaki and Y. Karasawa, “Three-element fiber-type optical phased array antenna with high-speed two-dimensional optical beam steering,” Electron. Commun. Jpn. 82, 42–51 (1999).
[Crossref]

1997 (1)

Y. Murakami, K. Inagaki, and Y. Karasawa, “Beam forming characteristics of a waveguide-type optical phased array antenna,” IEICE Trans. Commun. E80-B, 1997.

1996 (2)

M. Yamaguchi, T. Yamamoto, K. Hirabayashi, S. Matsuo, and K. Koyabu, “High-density digital free-space photonic-switching fabrics using exciton absorption reflection-switch (EARS) arrays and microbeam optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 2, 47–54 (1996).
[Crossref]

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

1990 (1)

H. S. Hinton, “Photonic switching fabrics,” IEEE Communications Magazine 28, April 1990, 71–89.
[Crossref]

1986 (1)

J.-P. Herriau, A. Delboulbe, J.-P. Huignard, G. Roosen, and G. Pauliat, ”Optical-beam steering for fiber array using dynamic holography,” J. Lightwave Technol. 4, 905–907 (1986).
[Crossref]

Amano, C.

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

Araki, K.

M. Toyoshima and K. Araki, Japan Patent Application for a “Beam splitting method,” No. 3069703, filed 24 Nov. 1999.

Arnon, S.

D. Bushuev, D. Kedar, and S. Arnon, “Analyzing the performance of a nanosatellite cluster-detector array receiver for laser communication,” J. Lightwave Technol. 21, 447–455 (2003).
[Crossref]

A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites using an optical phased array antenna,” Opt. Eng. 42, No.7, 2015–2024 (2003).
[Crossref]

Bushuev, D.

Corkum, D. L.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Delboulbe, A.

J.-P. Herriau, A. Delboulbe, J.-P. Huignard, G. Roosen, and G. Pauliat, ”Optical-beam steering for fiber array using dynamic holography,” J. Lightwave Technol. 4, 905–907 (1986).
[Crossref]

Dorschner, T. A.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Friedman, L. J.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Fujita, T.

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “High-speed optical FSK modulator for optical packet labeling,” J. Lightwave Technol. 23, 87–94 (2005).
[Crossref]

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
[Crossref]

Herriau, J.-P.

J.-P. Herriau, A. Delboulbe, J.-P. Huignard, G. Roosen, and G. Pauliat, ”Optical-beam steering for fiber array using dynamic holography,” J. Lightwave Technol. 4, 905–907 (1986).
[Crossref]

Higuma, K.

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “High-speed optical FSK modulator for optical packet labeling,” J. Lightwave Technol. 23, 87–94 (2005).
[Crossref]

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
[Crossref]

Hinton, H. S.

H. S. Hinton, “Photonic switching fabrics,” IEEE Communications Magazine 28, April 1990, 71–89.
[Crossref]

Hirabayashi, K.

M. Yamaguchi, T. Yamamoto, K. Hirabayashi, S. Matsuo, and K. Koyabu, “High-density digital free-space photonic-switching fabrics using exciton absorption reflection-switch (EARS) arrays and microbeam optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 2, 47–54 (1996).
[Crossref]

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

Hobbs, D. S.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Holz, M.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Huignard, J.-P.

J.-P. Herriau, A. Delboulbe, J.-P. Huignard, G. Roosen, and G. Pauliat, ”Optical-beam steering for fiber array using dynamic holography,” J. Lightwave Technol. 4, 905–907 (1986).
[Crossref]

Hunwardsen, M.

B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” IEEE Aerospace Conference Proceedings 3, March 2004, 6–13.

Ichikawa, J.

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “High-speed optical FSK modulator for optical packet labeling,” J. Lightwave Technol. 23, 87–94 (2005).
[Crossref]

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
[Crossref]

Inagaki, K.

K. Inagaki and Y. Karasawa, “Three-element fiber-type optical phased array antenna with high-speed two-dimensional optical beam steering,” Electron. Commun. Jpn. 82, 42–51 (1999).
[Crossref]

Y. Murakami, K. Inagaki, and Y. Karasawa, “Beam forming characteristics of a waveguide-type optical phased array antenna,” IEICE Trans. Commun. E80-B, 1997.

Iwamura, H.

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

Izutsu, M.

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “High-speed optical FSK modulator for optical packet labeling,” J. Lightwave Technol. 23, 87–94 (2005).
[Crossref]

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
[Crossref]

Kalmar, A.

K. H. Kudielka, A. Kalmar, and W. R. Leeb, “Design and breadboarding of a phased telescope array for free-space laser communications,” Proceeding of IEEE International Symposium on Phased Array Systems and Technology, (1996), pp. 419–424.
[Crossref]

Karasawa, Y.

K. Inagaki and Y. Karasawa, “Three-element fiber-type optical phased array antenna with high-speed two-dimensional optical beam steering,” Electron. Commun. Jpn. 82, 42–51 (1999).
[Crossref]

Y. Murakami, K. Inagaki, and Y. Karasawa, “Beam forming characteristics of a waveguide-type optical phased array antenna,” IEICE Trans. Commun. E80-B, 1997.

Kawanishi, T.

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “High-speed optical FSK modulator for optical packet labeling,” J. Lightwave Technol. 23, 87–94 (2005).
[Crossref]

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
[Crossref]

Kedar, D.

Kohama, Y.

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

Koyabu, K.

M. Yamaguchi, T. Yamamoto, K. Hirabayashi, S. Matsuo, and K. Koyabu, “High-density digital free-space photonic-switching fabrics using exciton absorption reflection-switch (EARS) arrays and microbeam optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 2, 47–54 (1996).
[Crossref]

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

Kudielka, K. H.

K. H. Kudielka, A. Kalmar, and W. R. Leeb, “Design and breadboarding of a phased telescope array for free-space laser communications,” Proceeding of IEEE International Symposium on Phased Array Systems and Technology, (1996), pp. 419–424.
[Crossref]

Kurokawa, T.

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

Leeb, W. R.

K. H. Kudielka, A. Kalmar, and W. R. Leeb, “Design and breadboarding of a phased telescope array for free-space laser communications,” Proceeding of IEEE International Symposium on Phased Array Systems and Technology, (1996), pp. 419–424.
[Crossref]

Liberman, S.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Mahajan, M.

B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” IEEE Aerospace Conference Proceedings 3, March 2004, 6–13.

Matsuo, S.

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

M. Yamaguchi, T. Yamamoto, K. Hirabayashi, S. Matsuo, and K. Koyabu, “High-density digital free-space photonic-switching fabrics using exciton absorption reflection-switch (EARS) arrays and microbeam optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 2, 47–54 (1996).
[Crossref]

Mcmanamon, P. F.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Murakami, Y.

Y. Murakami, K. Inagaki, and Y. Karasawa, “Beam forming characteristics of a waveguide-type optical phased array antenna,” IEICE Trans. Commun. E80-B, 1997.

Nguyen, H. Q.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Pauliat, G.

J.-P. Herriau, A. Delboulbe, J.-P. Huignard, G. Roosen, and G. Pauliat, ”Optical-beam steering for fiber array using dynamic holography,” J. Lightwave Technol. 4, 905–907 (1986).
[Crossref]

Polishuk, A.

A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites using an optical phased array antenna,” Opt. Eng. 42, No.7, 2015–2024 (2003).
[Crossref]

Resler, D. P.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Roosen, G.

J.-P. Herriau, A. Delboulbe, J.-P. Huignard, G. Roosen, and G. Pauliat, ”Optical-beam steering for fiber array using dynamic holography,” J. Lightwave Technol. 4, 905–907 (1986).
[Crossref]

Sakamoto, T.

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “High-speed optical FSK modulator for optical packet labeling,” J. Lightwave Technol. 23, 87–94 (2005).
[Crossref]

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
[Crossref]

Sharp, R. C.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Shinada, S.

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “High-speed optical FSK modulator for optical packet labeling,” J. Lightwave Technol. 23, 87–94 (2005).
[Crossref]

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
[Crossref]

Toyoshima, M.

M. Toyoshima and K. Araki, Japan Patent Application for a “Beam splitting method,” No. 3069703, filed 24 Nov. 1999.

Watson, E. A.

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Winker, B.

B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” IEEE Aerospace Conference Proceedings 3, March 2004, 6–13.

Yamaguchi, M.

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

M. Yamaguchi, T. Yamamoto, K. Hirabayashi, S. Matsuo, and K. Koyabu, “High-density digital free-space photonic-switching fabrics using exciton absorption reflection-switch (EARS) arrays and microbeam optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 2, 47–54 (1996).
[Crossref]

Yamamoto, T.

M. Yamaguchi, T. Yamamoto, K. Hirabayashi, S. Matsuo, and K. Koyabu, “High-density digital free-space photonic-switching fabrics using exciton absorption reflection-switch (EARS) arrays and microbeam optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 2, 47–54 (1996).
[Crossref]

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

Electron. Commun. Jpn. (1)

K. Inagaki and Y. Karasawa, “Three-element fiber-type optical phased array antenna with high-speed two-dimensional optical beam steering,” Electron. Commun. Jpn. 82, 42–51 (1999).
[Crossref]

Electron. Lett. (1)

T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “LiNbO3 highspeed optical FSK modulator,” Electron. Lett. 40, 691–692 (2004).
[Crossref]

IEEE Aerospace Conference Proceedings (1)

B. Winker, M. Mahajan, and M. Hunwardsen, “Liquid crystal beam directors for airborne free-space optical communications,” IEEE Aerospace Conference Proceedings 3, March 2004, 6–13.

IEEE Communications Magazine (1)

H. S. Hinton, “Photonic switching fabrics,” IEEE Communications Magazine 28, April 1990, 71–89.
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Yamaguchi, T. Yamamoto, K. Hirabayashi, S. Matsuo, and K. Koyabu, “High-density digital free-space photonic-switching fabrics using exciton absorption reflection-switch (EARS) arrays and microbeam optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 2, 47–54 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matsuo, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, and K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photon. Technol. Lett. 8, 358–360 (1996).
[Crossref]

IEICE Trans. Commun. (1)

Y. Murakami, K. Inagaki, and Y. Karasawa, “Beam forming characteristics of a waveguide-type optical phased array antenna,” IEICE Trans. Commun. E80-B, 1997.

J. Lightwave Technol. (3)

Opt. Eng. (1)

A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites using an optical phased array antenna,” Opt. Eng. 42, No.7, 2015–2024 (2003).
[Crossref]

Proceeding of IEEE (1)

P. F. Mcmanamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proceeding of IEEE 84, 1996, 268–298.

Other (2)

K. H. Kudielka, A. Kalmar, and W. R. Leeb, “Design and breadboarding of a phased telescope array for free-space laser communications,” Proceeding of IEEE International Symposium on Phased Array Systems and Technology, (1996), pp. 419–424.
[Crossref]

M. Toyoshima and K. Araki, Japan Patent Application for a “Beam splitting method,” No. 3069703, filed 24 Nov. 1999.

Supplementary Material (1)

» Media 1: GIF (1247 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Beam splitting method to produce equal-intensity parallel beams. The device basically consists of a beam splitter and a mirror surface.

Fig. 2.
Fig. 2.

Method of generating two-dimensional multiple beams by introducing two different relative optical time delays.

Fig. 3.
Fig. 3.

Simulated two-dimensional deflection characteristics of the 2 × 2 laser beams as a function of wavelength.

Fig. 4.
Fig. 4.

Experimental setup for the beam deflection measurement.

Fig. 5.
Fig. 5.

Intensity distribution of the 2 × 2 beam array just behind the second MBG.

Fig. 6.
Fig. 6.

Movie of the 2 × 2 beam array as obtained in the focal plane of a lens in normalized intensity. [Media 1]

Fig. 7.(a).
Fig. 7.(a).

Beam patterns along the x axis as a function of wavelength.

Fig. 7 (b)
Fig. 7 (b)

Beam patterns along the y axis as a function of wavelength.

Fig. 8.
Fig. 8.

Two-dimensional deflection characteristics of the 2 × 2 laser beams as a function of wavelength. (Because of the low resolution of the measurement setup of 1 mrad, the discrete 3-level result was to be expected.).

Tables (1)

Tables Icon

Table 1. Parameters used for two-dimensional beam deflection as shown in Fig. 3.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

R i = 1 1 N ( i 1 ) ,
AB ¯ = 2 d tan θ 2 sin θ 1 = 2 n 2 d sin 2 θ 2 n 1 cos θ 2 ,
ADC ¯ = 2 AD ¯ = 2 d cos θ 2 ,
Φ B = k 0 · AB ¯ = 2 π λ 0 2 n 2 d sin 2 θ 2 n 1 cos θ 2 ,
Φ C = n 0 k 0 · ADC ¯ = 2 π λ 0 2 n 2 d cos θ 2 ,
Δ Φ B = 2 n 2 d sin 2 θ 2 n 1 cos θ 2 ( 2 π λ 1 2 π λ 0 ) ,
Δ Φ C = 2 n 2 d cos θ 2 ( 2 π λ 1 2 π λ 0 ) ,
ΔΦ = Δ Φ C Δ Φ B = 2 n 2 d cos θ 2 ( 2 π λ 1 2 π λ 0 ) ,
θ def = tan 1 [ ( ΔΦ k 1 ) BC ] = tan 1 [ ( λ 1 2 π ) 2 n 2 d cos θ 2 ( 2 π λ 1 2 π λ 0 ) a cos θ 1 ] ,
θ def = n 2 ( 2 d a ) 2 ( 2 d a ) 2 + 1 n 2 2 ( 1 λ 1 λ 0 ) ,
α a d n 2 = n 2 ( 2 d a ) 2 ( 2 d a ) 2 + 1 n 2 2 ,
θ def = α a d n 2 ( 1 λ 1 λ 0 ) .
θ x = α x ( 1 λ 1 λ 0 ) ,
θ y = α y ( 1 λ 1 λ 0 ) ,
α x = n 2 γ 2 γ 2 + 1 n 2 2 ,
α y = n 2 m 2 γ 2 m 2 γ 2 + 1 n 2 2 ,
α y = N α x ,
m = N 2 γ 2 + N 2 γ 2 + 4 N 2 ( γ 2 + 1 n 2 2 ) ( 1 n 2 2 ) 2 ( γ 2 + 1 n 2 2 ) .

Metrics