Abstract

A miniature optical spectrometer with a thin-film planar waveguide grating coupler in combination with a miniature plano-convex focusing lens has been investigated. With optical part of the spectrometer as small as 0.2 cubic cm, the spectral resolution varies from 0.3 nm to 4.6 nm within the wavelength range 488.0 nm – 632.8 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7, 173–178 (1996).
    [Crossref]
  2. H.L. Kung, S.R. Bhalotra, J.D. Mansell, D.A.B. Miller, and J.S. Harris, “Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector,” IEEE J. Sel. Top. Quantum. Electron. 8, 98–105 (2002).
    [Crossref]
  3. H. Stiebig, D. Knipp, S.R. Bhalotra, H.L. Kung, and David A.B. Miller, “Interferometric sensors for spectral imaging,” Sens. Act. A 120, 110–114 (2005).
    [Crossref]
  4. Dietmar Sander and Jorg Muller, “Selffocusing phase transmission grating for an integrated optical microspectrometer,” Sens. Act. A 88, 1–9 (2001).
    [Crossref]
  5. G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Act. A 92, 52–59 (2001).
    [Crossref]
  6. J.H. Correia, G. de Graf, M. Bartek, and R.F. Wolffenbuttel, “A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface,” IEEE J. Solid-State Circuits 37, 1344 – 1347 (2002).
    [Crossref]
  7. R.F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE. Trans. Instrum. Meas. 53, 197–202 (2004).
    [Crossref]
  8. Don.S. Goldman, P.L. White, and N.C. Anheier, “Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis,” Appl. Opt. 29, 4583–4589 (1990).
    [Crossref] [PubMed]
  9. S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, “Planar reflection grating lens for compact spectroscopic imaging system,” Appl. Opt. 42, 175–180 (2003).
    [Crossref] [PubMed]
  10. D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
    [Crossref]
  11. O. Manzardo, H.P. Herzig, C.R. Marxer, and N.F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705–1707 (1999).
    [Crossref]
  12. S.H. Kong, D.D.L. Wijngaards, and R.F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Act. A 92, 88–95 (2001).
    [Crossref]
  13. Pavel Cheben, Ian Powell, Siegfried Janz, and Dan-Xia Xu, “Wavelength-dispersive device based on Fourier-transform Michelson-type arrayed waveguide grating,” Opt. Lett. 30, 1824–1826 (2005).
    [Crossref] [PubMed]
  14. Ivan Avrutsky, Kalyani Chaganti, Ildar Salakhutdinov, and Gregory Auner, “Concept of miniature optical spectrometer using integrated optical and microoptical components,” (submitted to Appl.Opt.).
  15. D. Maystre, M. Neviere, and R. Petit, “Experimental verifications and applications of the theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), Chap. 6.
    [Crossref]
  16. D. W. C. So and S. R. Seshadri, “Metal-island-film polarizer,” J. Opt. Soc. Am. B 14, 2831–2841 (1997).
    [Crossref]
  17. M. A. Sletten and S. R. Seshadri, “Thick metal surface-polariton polarizer for a planar optical waveguide,” J. Opt. Soc. Am. A 7, 1174–1184 (1990).
    [Crossref]

2005 (2)

H. Stiebig, D. Knipp, S.R. Bhalotra, H.L. Kung, and David A.B. Miller, “Interferometric sensors for spectral imaging,” Sens. Act. A 120, 110–114 (2005).
[Crossref]

Pavel Cheben, Ian Powell, Siegfried Janz, and Dan-Xia Xu, “Wavelength-dispersive device based on Fourier-transform Michelson-type arrayed waveguide grating,” Opt. Lett. 30, 1824–1826 (2005).
[Crossref] [PubMed]

2004 (1)

R.F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE. Trans. Instrum. Meas. 53, 197–202 (2004).
[Crossref]

2003 (1)

2002 (3)

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
[Crossref]

H.L. Kung, S.R. Bhalotra, J.D. Mansell, D.A.B. Miller, and J.S. Harris, “Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector,” IEEE J. Sel. Top. Quantum. Electron. 8, 98–105 (2002).
[Crossref]

J.H. Correia, G. de Graf, M. Bartek, and R.F. Wolffenbuttel, “A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface,” IEEE J. Solid-State Circuits 37, 1344 – 1347 (2002).
[Crossref]

2001 (3)

S.H. Kong, D.D.L. Wijngaards, and R.F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Act. A 92, 88–95 (2001).
[Crossref]

Dietmar Sander and Jorg Muller, “Selffocusing phase transmission grating for an integrated optical microspectrometer,” Sens. Act. A 88, 1–9 (2001).
[Crossref]

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Act. A 92, 52–59 (2001).
[Crossref]

1999 (1)

1997 (1)

1996 (1)

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7, 173–178 (1996).
[Crossref]

1990 (2)

Alderman, J.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
[Crossref]

Anheier, N.C.

Auner, Gregory

Ivan Avrutsky, Kalyani Chaganti, Ildar Salakhutdinov, and Gregory Auner, “Concept of miniature optical spectrometer using integrated optical and microoptical components,” (submitted to Appl.Opt.).

Avrutsky, Ivan

Ivan Avrutsky, Kalyani Chaganti, Ildar Salakhutdinov, and Gregory Auner, “Concept of miniature optical spectrometer using integrated optical and microoptical components,” (submitted to Appl.Opt.).

Bartek, M.

J.H. Correia, G. de Graf, M. Bartek, and R.F. Wolffenbuttel, “A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface,” IEEE J. Solid-State Circuits 37, 1344 – 1347 (2002).
[Crossref]

Bhalotra, S.R.

H. Stiebig, D. Knipp, S.R. Bhalotra, H.L. Kung, and David A.B. Miller, “Interferometric sensors for spectral imaging,” Sens. Act. A 120, 110–114 (2005).
[Crossref]

H.L. Kung, S.R. Bhalotra, J.D. Mansell, D.A.B. Miller, and J.S. Harris, “Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector,” IEEE J. Sel. Top. Quantum. Electron. 8, 98–105 (2002).
[Crossref]

Brennan, D.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
[Crossref]

Chaganti, Kalyani

Ivan Avrutsky, Kalyani Chaganti, Ildar Salakhutdinov, and Gregory Auner, “Concept of miniature optical spectrometer using integrated optical and microoptical components,” (submitted to Appl.Opt.).

Cheben, Pavel

Connor, B.O

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
[Crossref]

Correia, J.H.

J.H. Correia, G. de Graf, M. Bartek, and R.F. Wolffenbuttel, “A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface,” IEEE J. Solid-State Circuits 37, 1344 – 1347 (2002).
[Crossref]

Dunphy, J.

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7, 173–178 (1996).
[Crossref]

Goldman, Don.S.

Graf, G. de

J.H. Correia, G. de Graf, M. Bartek, and R.F. Wolffenbuttel, “A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface,” IEEE J. Solid-State Circuits 37, 1344 – 1347 (2002).
[Crossref]

Harris, J.S.

H.L. Kung, S.R. Bhalotra, J.D. Mansell, D.A.B. Miller, and J.S. Harris, “Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector,” IEEE J. Sel. Top. Quantum. Electron. 8, 98–105 (2002).
[Crossref]

Herzig, H.P.

Huang, J.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
[Crossref]

Janz, Siegfried

Knipp, D.

H. Stiebig, D. Knipp, S.R. Bhalotra, H.L. Kung, and David A.B. Miller, “Interferometric sensors for spectral imaging,” Sens. Act. A 120, 110–114 (2005).
[Crossref]

Kong, S.H.

S.H. Kong, D.D.L. Wijngaards, and R.F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Act. A 92, 88–95 (2001).
[Crossref]

Kung, H.L.

H. Stiebig, D. Knipp, S.R. Bhalotra, H.L. Kung, and David A.B. Miller, “Interferometric sensors for spectral imaging,” Sens. Act. A 120, 110–114 (2005).
[Crossref]

H.L. Kung, S.R. Bhalotra, J.D. Mansell, D.A.B. Miller, and J.S. Harris, “Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector,” IEEE J. Sel. Top. Quantum. Electron. 8, 98–105 (2002).
[Crossref]

Lammel, G.

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Act. A 92, 52–59 (2001).
[Crossref]

Mansell, J.D.

H.L. Kung, S.R. Bhalotra, J.D. Mansell, D.A.B. Miller, and J.S. Harris, “Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector,” IEEE J. Sel. Top. Quantum. Electron. 8, 98–105 (2002).
[Crossref]

Manzardo, O.

Marxer, C.R.

Mathuna, C. O.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
[Crossref]

Maystre, D.

D. Maystre, M. Neviere, and R. Petit, “Experimental verifications and applications of the theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), Chap. 6.
[Crossref]

Miller, D.A.B.

H.L. Kung, S.R. Bhalotra, J.D. Mansell, D.A.B. Miller, and J.S. Harris, “Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector,” IEEE J. Sel. Top. Quantum. Electron. 8, 98–105 (2002).
[Crossref]

Miller, David A.B.

H. Stiebig, D. Knipp, S.R. Bhalotra, H.L. Kung, and David A.B. Miller, “Interferometric sensors for spectral imaging,” Sens. Act. A 120, 110–114 (2005).
[Crossref]

Muller, Jorg

Dietmar Sander and Jorg Muller, “Selffocusing phase transmission grating for an integrated optical microspectrometer,” Sens. Act. A 88, 1–9 (2001).
[Crossref]

Neviere, M.

D. Maystre, M. Neviere, and R. Petit, “Experimental verifications and applications of the theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), Chap. 6.
[Crossref]

Nishihara, H.

Nishio, K.

Okano, M.

Okayama, F.

Petit, R.

D. Maystre, M. Neviere, and R. Petit, “Experimental verifications and applications of the theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), Chap. 6.
[Crossref]

Powell, Ian

Renaud, Ph.

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Act. A 92, 52–59 (2001).
[Crossref]

Rooij, N.F. de

Salakhutdinov, Ildar

Ivan Avrutsky, Kalyani Chaganti, Ildar Salakhutdinov, and Gregory Auner, “Concept of miniature optical spectrometer using integrated optical and microoptical components,” (submitted to Appl.Opt.).

Sander, Dietmar

Dietmar Sander and Jorg Muller, “Selffocusing phase transmission grating for an integrated optical microspectrometer,” Sens. Act. A 88, 1–9 (2001).
[Crossref]

Sasaki, T.

Satoh, K.

Sattler, I.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
[Crossref]

Schweizer, S.

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Act. A 92, 52–59 (2001).
[Crossref]

Seshadri, S. R.

Shiroshita, K.

Signorazzi, M.

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7, 173–178 (1996).
[Crossref]

Sletten, M. A.

So, D. W. C.

Stiebig, H.

H. Stiebig, D. Knipp, S.R. Bhalotra, H.L. Kung, and David A.B. Miller, “Interferometric sensors for spectral imaging,” Sens. Act. A 120, 110–114 (2005).
[Crossref]

Ura, S.

Vannucci, A.

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7, 173–178 (1996).
[Crossref]

Varasi, M.

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7, 173–178 (1996).
[Crossref]

Walshe, J.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
[Crossref]

White, P.L.

Wijngaards, D.D.L.

S.H. Kong, D.D.L. Wijngaards, and R.F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Act. A 92, 88–95 (2001).
[Crossref]

Wolffenbuttel, R.F.

R.F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE. Trans. Instrum. Meas. 53, 197–202 (2004).
[Crossref]

J.H. Correia, G. de Graf, M. Bartek, and R.F. Wolffenbuttel, “A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface,” IEEE J. Solid-State Circuits 37, 1344 – 1347 (2002).
[Crossref]

S.H. Kong, D.D.L. Wijngaards, and R.F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Act. A 92, 88–95 (2001).
[Crossref]

Xu, Dan-Xia

Yotsuya, T.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum. Electron. (1)

H.L. Kung, S.R. Bhalotra, J.D. Mansell, D.A.B. Miller, and J.S. Harris, “Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector,” IEEE J. Sel. Top. Quantum. Electron. 8, 98–105 (2002).
[Crossref]

IEEE J. Solid-State Circuits (1)

J.H. Correia, G. de Graf, M. Bartek, and R.F. Wolffenbuttel, “A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface,” IEEE J. Solid-State Circuits 37, 1344 – 1347 (2002).
[Crossref]

IEEE. Trans. Instrum. Meas. (1)

R.F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE. Trans. Instrum. Meas. 53, 197–202 (2004).
[Crossref]

Infrared Phys. Technol. (1)

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B.O Connor, and C. O. Mathuna, “Development of a microspectrometer system for process control application,” Infrared Phys. Technol. 43, 69–76 (2002).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7, 173–178 (1996).
[Crossref]

Opt. Lett. (2)

Sens. Act. A (4)

S.H. Kong, D.D.L. Wijngaards, and R.F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Act. A 92, 88–95 (2001).
[Crossref]

H. Stiebig, D. Knipp, S.R. Bhalotra, H.L. Kung, and David A.B. Miller, “Interferometric sensors for spectral imaging,” Sens. Act. A 120, 110–114 (2005).
[Crossref]

Dietmar Sander and Jorg Muller, “Selffocusing phase transmission grating for an integrated optical microspectrometer,” Sens. Act. A 88, 1–9 (2001).
[Crossref]

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Act. A 92, 52–59 (2001).
[Crossref]

Other (2)

Ivan Avrutsky, Kalyani Chaganti, Ildar Salakhutdinov, and Gregory Auner, “Concept of miniature optical spectrometer using integrated optical and microoptical components,” (submitted to Appl.Opt.).

D. Maystre, M. Neviere, and R. Petit, “Experimental verifications and applications of the theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), Chap. 6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Integrated-optic and micro-optic combined design of a miniature spectrometer (b) AFM image of the dry etched grating on hafnium oxide waveguide.

Fig. 2.
Fig. 2.

(a) Picture of the sharply focused arcs (514.5 nm and 632.8 nm) on a paper screen in the case of f = 14 cm lens (b) The waveguide and 1 cm lens set-up with the focused red (632.8 nm) and green (514.5 nm) arcs on a paper screen.

Fig. 3.
Fig. 3.

With f = 2 cm lens (a) A CCD picture of the sharply focused arcs at 632.8 nm (left) and 640.0 nm (right) and the one-dimensional intensity profile along the mid-points of the arcs (b) and (c) Lorentzian approximation of the one-dimensional intensity peaks at 632.8 nm and 640.0 nm respectively.

Fig. 4.
Fig. 4.

(a) Multiple wavelengths without background reduction (b) Parabolic approximation to find the resolution, Δλ, of the miniature spectrometer Inset shows the intersection of the rays corresponding to different wavelengths with the CCD plane (The picture is exaggerated for the purpose of clarity).

Fig. 5.
Fig. 5.

(a) Collimated (blue) and uncollimated light (red) and the outcoupled spectra on the CCD (b) Wave vectors in the x-z plane and the resulting spectrum for an uncollimated beam (c) Wave vectors in the x-z plane and the resulting spectrum for a collimated beam

Tables (1)

Tables Icon

Table 1. Different set-ups and the corresponding resolution calculated using a pair of wavelengths

Metrics