Abstract

A miniature optical spectrometer with a thin-film planar waveguide grating coupler in combination with a miniature plano-convex focusing lens has been investigated. With optical part of the spectrometer as small as 0.2 cubic cm, the spectral resolution varies from 0.3 nm to 4.6 nm within the wavelength range 488.0 nm – 632.8 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Varasi, M. Signorazzi, A. Vannucci and J. Dunphy, "A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing," Meas. Sci. Technol. 7, 173-178 (1996).
    [CrossRef]
  2. H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. HarrisJr., "Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector," IEEE J. Sel. Top. Quantum. Electron. 8,98-105 (2002).
    [CrossRef]
  3. H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensors for spectral imaging," Sens. Actuators, A 120, 110-114 (2005).
    [CrossRef]
  4. D. Sander and J. Muller, "Self-focusing phase transmission grating for an integrated optical microspectrometer," Sens. Actuators, A 88, 1-9 (2001).
    [CrossRef]
  5. G. Lammel, S. Schweizer, and Ph. Renaud, "Microspectrometer based on a tunable optical filter of porous silicon," Sens. Actuators, A 92, 52-59 (2001).
    [CrossRef]
  6. J. H. Correia, G. de Graf, M. Bartek and R. F. Wolffenbuttel, "A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface," IEEE J. Solid-State Circuits 37,1344-1347 (2002).
    [CrossRef]
  7. R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE. Trans. Instrum. Meas. 53, 197-202 (2004).
    [CrossRef]
  8. D. S. Goldman, P. L. White, and N. C. Anheier, "Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis," Appl. Opt. 29, 4583-4589 (1990).
    [CrossRef] [PubMed]
  9. S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," Appl. Opt. 42, 175-180 (2003).
    [CrossRef] [PubMed]
  10. D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
    [CrossRef]
  11. O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, "Miniaturized time-scanning Fourier transform spectrometer based on silicon technology," Opt. Lett. 24, 1705-1707 (1999).
    [CrossRef]
  12. S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Act. A 92,88-95 (2001).
    [CrossRef]
  13. P. Cheben, I. Powell, S. Janz, and D.-X. Xu, "Wavelength-dispersive device based on Fourier-transform Michelson-type arrayed waveguide grating," Opt. Lett. 30, 1824-1826 (2005).
    [CrossRef] [PubMed]
  14. I. Avrutsky, K. Chaganti, I. Salakhutdinov, and G. Auner, ",Concept of miniature optical spectrometer using integrated optical and micro-optical components," (submitted to Appl. Opt.).
  15. D. Maystre, M. Neviere, and R. Petit, "Experimental verifications and applications of the theory," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), Chap. 6.
    [CrossRef]
  16. D. W. C. So and S. R. Seshadri, "Metal-island-film polarizer," J. Opt. Soc. Am. B 14, 2831-2841 (1997).
    [CrossRef]
  17. M. A. Sletten and S. R. Seshadri, "Thick metal surface-polariton polarizer for a planar optical waveguide," J. Opt. Soc. Am. A 7, 1174-1184 (1990).
    [CrossRef]

2005

2004

R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE. Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

2003

2002

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
[CrossRef]

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. HarrisJr., "Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector," IEEE J. Sel. Top. Quantum. Electron. 8,98-105 (2002).
[CrossRef]

J. H. Correia, G. de Graf, M. Bartek and R. F. Wolffenbuttel, "A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface," IEEE J. Solid-State Circuits 37,1344-1347 (2002).
[CrossRef]

2001

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Act. A 92,88-95 (2001).
[CrossRef]

1999

1997

1996

M. Varasi, M. Signorazzi, A. Vannucci and J. Dunphy, "A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing," Meas. Sci. Technol. 7, 173-178 (1996).
[CrossRef]

1990

Alderman, J.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
[CrossRef]

Anheier, N. C.

Bartek, M.

J. H. Correia, G. de Graf, M. Bartek and R. F. Wolffenbuttel, "A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface," IEEE J. Solid-State Circuits 37,1344-1347 (2002).
[CrossRef]

Bhalotra, S. R.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. HarrisJr., "Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector," IEEE J. Sel. Top. Quantum. Electron. 8,98-105 (2002).
[CrossRef]

Brennan, D.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
[CrossRef]

Cheben, P.

Correia, J. H.

J. H. Correia, G. de Graf, M. Bartek and R. F. Wolffenbuttel, "A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface," IEEE J. Solid-State Circuits 37,1344-1347 (2002).
[CrossRef]

de Graf, G.

J. H. Correia, G. de Graf, M. Bartek and R. F. Wolffenbuttel, "A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface," IEEE J. Solid-State Circuits 37,1344-1347 (2002).
[CrossRef]

de Rooij, N. F.

Dunphy, J.

M. Varasi, M. Signorazzi, A. Vannucci and J. Dunphy, "A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing," Meas. Sci. Technol. 7, 173-178 (1996).
[CrossRef]

Goldman, D. S.

Harris, J. S.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. HarrisJr., "Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector," IEEE J. Sel. Top. Quantum. Electron. 8,98-105 (2002).
[CrossRef]

Herzig, H. P.

Huang, J.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
[CrossRef]

Janz, S.

Kong, S. H.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Act. A 92,88-95 (2001).
[CrossRef]

Kung, H. L.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. HarrisJr., "Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector," IEEE J. Sel. Top. Quantum. Electron. 8,98-105 (2002).
[CrossRef]

Mansell, J. D.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. HarrisJr., "Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector," IEEE J. Sel. Top. Quantum. Electron. 8,98-105 (2002).
[CrossRef]

Manzardo, O.

Marxer, C. R.

Mathuna, C. O.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
[CrossRef]

Miller, D. A. B.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. HarrisJr., "Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector," IEEE J. Sel. Top. Quantum. Electron. 8,98-105 (2002).
[CrossRef]

Nishihara, H.

Nishio, K.

O’Connor, B.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
[CrossRef]

Okano, M.

Okayama, F.

Powell, I.

Sasaki, T.

Satoh, K.

Sattler, I.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
[CrossRef]

Seshadri, S. R.

Shiroshita, K.

Signorazzi, M.

M. Varasi, M. Signorazzi, A. Vannucci and J. Dunphy, "A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing," Meas. Sci. Technol. 7, 173-178 (1996).
[CrossRef]

Sletten, M. A.

Ura, S.

Vannucci, A.

M. Varasi, M. Signorazzi, A. Vannucci and J. Dunphy, "A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing," Meas. Sci. Technol. 7, 173-178 (1996).
[CrossRef]

Varasi, M.

M. Varasi, M. Signorazzi, A. Vannucci and J. Dunphy, "A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing," Meas. Sci. Technol. 7, 173-178 (1996).
[CrossRef]

Walshe, J.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
[CrossRef]

White, P. L.

Wijngaards, D. D. L.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Act. A 92,88-95 (2001).
[CrossRef]

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE. Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

J. H. Correia, G. de Graf, M. Bartek and R. F. Wolffenbuttel, "A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface," IEEE J. Solid-State Circuits 37,1344-1347 (2002).
[CrossRef]

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Act. A 92,88-95 (2001).
[CrossRef]

Xu, D.-X.

Yotsuya, T.

Appl. Opt.

IEEE J. Sel. Top. Quantum. Electron.

H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. HarrisJr., "Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector," IEEE J. Sel. Top. Quantum. Electron. 8,98-105 (2002).
[CrossRef]

IEEE J. Solid-State Circuits

J. H. Correia, G. de Graf, M. Bartek and R. F. Wolffenbuttel, "A single-chip CMOS optical microspectrometer with light-to-frequency converter and bus interface," IEEE J. Solid-State Circuits 37,1344-1347 (2002).
[CrossRef]

IEEE. Trans. Instrum. Meas.

R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE. Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

Infrared Phys. Technol.

D. Brennan, J. Alderman, I. Sattler, J. Walshe, J. Huang, B. O’Connor, and C. O. Mathuna, "Development of a microspectrometer system for process control application," Infrared Phys. Technol. 43, 69-76 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Meas. Sci. Technol.

M. Varasi, M. Signorazzi, A. Vannucci and J. Dunphy, "A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing," Meas. Sci. Technol. 7, 173-178 (1996).
[CrossRef]

Opt. Lett.

Sens. Act. A

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Act. A 92,88-95 (2001).
[CrossRef]

Other

I. Avrutsky, K. Chaganti, I. Salakhutdinov, and G. Auner, ",Concept of miniature optical spectrometer using integrated optical and micro-optical components," (submitted to Appl. Opt.).

D. Maystre, M. Neviere, and R. Petit, "Experimental verifications and applications of the theory," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), Chap. 6.
[CrossRef]

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensors for spectral imaging," Sens. Actuators, A 120, 110-114 (2005).
[CrossRef]

D. Sander and J. Muller, "Self-focusing phase transmission grating for an integrated optical microspectrometer," Sens. Actuators, A 88, 1-9 (2001).
[CrossRef]

G. Lammel, S. Schweizer, and Ph. Renaud, "Microspectrometer based on a tunable optical filter of porous silicon," Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Integrated-optic and micro-optic combined design of a miniature spectrometer (b) AFM image of the dry etched grating on hafnium oxide waveguide.

Fig. 2.
Fig. 2.

(a) Picture of the sharply focused arcs (514.5 nm and 632.8 nm) on a paper screen in the case of f = 14 cm lens (b) The waveguide and 1 cm lens set-up with the focused red (632.8 nm) and green (514.5 nm) arcs on a paper screen.

Fig. 3.
Fig. 3.

With f = 2 cm lens (a) A CCD picture of the sharply focused arcs at 632.8 nm (left) and 640.0 nm (right) and the one-dimensional intensity profile along the mid-points of the arcs (b) and (c) Lorentzian approximation of the one-dimensional intensity peaks at 632.8 nm and 640.0 nm respectively.

Fig. 4.
Fig. 4.

(a) Multiple wavelengths without background reduction (b) Parabolic approximation to find the resolution, Δλ, of the miniature spectrometer Inset shows the intersection of the rays corresponding to different wavelengths with the CCD plane (The picture is exaggerated for the purpose of clarity).

Fig. 5.
Fig. 5.

(a) Collimated (blue) and uncollimated light (red) and the outcoupled spectra on the CCD (b) Wave vectors in the x-z plane and the resulting spectrum for an uncollimated beam (c) Wave vectors in the x-z plane and the resulting spectrum for a collimated beam

Tables (1)

Tables Icon

Table 1. Different set-ups and the corresponding resolution calculated using a pair of wavelengths

Metrics