Abstract

We propose an all-optical switching device based on the interaction property between optical spatial solitons. By launching the nonlinear symmetric modes for the relative phase relation Π into the uniform nonlinear medium, the repulsive property between spatial solitons will be observed. Based on the repulsive property, a new all-optical switching device will be proposed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Blow, N. J. Doran, and B. K. Nayar, "Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac Interferometer," Opt. Lett. 14, 754 (1989).
    [CrossRef] [PubMed]
  2. L. Thylen, N. Finalayson, C. T. Seaton, and G. I. Stegeman, "All-optical guided-wave Mach-Zender switching device," Appl. Phys. Lett. 51, 1304 (1987).
    [CrossRef]
  3. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, "Femotosecond switching in dual-core-fiber nonlinear coupler," Opt. Lett. 13, 904 (1988).
    [CrossRef] [PubMed]
  4. Y. Silberberg and B. G. Sfez, "All-optical phase- and power-controlled switching in nonlinear waveguide junctions," Opt. Lett. 13, 1132 (1988).
    [CrossRef] [PubMed]
  5. J. P. Sabini, N. Finalyson, and G. I. Stegeman, "All-optical switching in nonlinear X junctions." Appl. Phys. Lett. 55, 1176 (1989).
    [CrossRef]
  6. H. Fouckhardt and Y. Silberberg, "All-optical switching in waveguide X junctions," J. Opt. Soc. Am. B. 7, 803 (1990).
    [CrossRef]
  7. Y. D. Wu, M. H. Chen, and H. J. Tasi, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737 (2002).
    [CrossRef]
  8. S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
    [CrossRef]
  9. U. Trutschel, F. Lederer, and M. Golz, "Nonlinear guided waves in multiplayer systems," IEEE J. Quantum Electron 25, 194 (1989).
    [CrossRef]
  10. S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
    [CrossRef]
  11. Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II,  4594, 323 (2001).
  12. Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structure and the numerical simulation," J. Nat. Kao. Uni. of App. Sci. 32,133 (2002).
  13. M. H. Chen, Y. D. Wu, and R. Z. Tasy, "Analyses of antisymmetric modes of three-layer nonlinear optical waveguide," J. Nat. Kao. Uni. of App. Sci.,  34, 1 (2005).
  14. H. Murata, M. Izutsu, and T. Sueta. "Optical bistability and all-optical switching in novel waveguide junctions with localized optical nonlinearity," J. Lightwave Technol. 16, 833 (1998).
    [CrossRef]
  15. Y. D. Wu, "Analyzing multilayer optical waveguide with a localized arbitrary nonlinear guiding film," IEEE J. Quantum Electron. 40, 529 (2004).
    [CrossRef]
  16. Y. D. Wu and D. H. Cai, "Analytical and numerical analyses of TE-polarized waves in the planner optical waveguides with the nonlinear guiding film," J. Eng. Technol. and Edu. 1, 19 (2004).
  17. Yi-Fan Li and K. Iizuka, "Unified nonlinear waveguide dispersion equations with our spurious roots," IEEE J. Quantum. Electron. 31, 791 (1995).
    [CrossRef]
  18. Y. D. Wu and M.-H. Chen, "Method for analyzing multilayer nonlinear optical waveguide," Opt. Express. 137982 (2005).
    [CrossRef] [PubMed]
  19. Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517 (2001).
  20. Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt. 23, 387 (2004).
    [CrossRef]
  21. Y. D. Wu, "New all-optical wavelength auto-router based on spatial solitons," Opt. Express. 12, 4172 (2004).
    [CrossRef] [PubMed]
  22. Y. D Wu, Y. F. Laio, M. H. Chen, and K. H. Chiang, "Nonlinear all-optical phase and power-controlled switch by using the spatial solitons interaction," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds.Proc SPIE. 5646, 334-344 (2005).
    [CrossRef]
  23. Y. D. Wu, Y. F. Laio, and M. H. Chiang, "A new all-optical phase-controlled routing switch," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds. Proc. SPIE. 5646, 345-357 (2005).
    [CrossRef]
  24. Y. D. Wu, "1xN all-optical switching device by using the phase modulation of spatial solitons," Appl. Opt. 44, 4114 (2005).
    [CrossRef]
  25. Y. D. Wu, "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron. 11, 307 (2005).
    [CrossRef]
  26. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Qunatum. Electron. 38, 37 (2002).
    [CrossRef]
  27. F. Garzia, and M. Bertolotti, "All-optical security coded key," Opt. Quantum. Electron. 33, 527 (2001).
    [CrossRef]
  28. Y. H. Pramono, and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater. 10, 209 (2001).
    [CrossRef]
  29. P. A. Belanger and P. Mathieu, "Dark soliton in a Kerr defocusing medium," Appl. Opt. 26, 111 (1987).
    [CrossRef] [PubMed]
  30. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, "Observation of spatial optical solitons in a nonlinear glass waveguide," Opt. Lett. 15, 471 (1990).
    [CrossRef] [PubMed]
  31. S. Blair and K. Wagner, "Spatialcsoliton angular deflection logic gates," Appl. Opt. 38, 6749 (1999).
    [CrossRef]
  32. H. F. Chou, C. F. Lin, and G. C. Wang, "An interative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides," J. Lightwave Technol. 16, 1686 (1998).
    [CrossRef]
  33. A. B. Aceves, J. V. Moloney, and A. C. Newell, "Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface," Phy. Rev. A. 39, 1809 (1989).
    [CrossRef]

2005

M. H. Chen, Y. D. Wu, and R. Z. Tasy, "Analyses of antisymmetric modes of three-layer nonlinear optical waveguide," J. Nat. Kao. Uni. of App. Sci.,  34, 1 (2005).

Y. D. Wu and M.-H. Chen, "Method for analyzing multilayer nonlinear optical waveguide," Opt. Express. 137982 (2005).
[CrossRef] [PubMed]

Y. D Wu, Y. F. Laio, M. H. Chen, and K. H. Chiang, "Nonlinear all-optical phase and power-controlled switch by using the spatial solitons interaction," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds.Proc SPIE. 5646, 334-344 (2005).
[CrossRef]

Y. D. Wu, "1xN all-optical switching device by using the phase modulation of spatial solitons," Appl. Opt. 44, 4114 (2005).
[CrossRef]

Y. D. Wu, "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron. 11, 307 (2005).
[CrossRef]

2004

Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt. 23, 387 (2004).
[CrossRef]

Y. D. Wu, "New all-optical wavelength auto-router based on spatial solitons," Opt. Express. 12, 4172 (2004).
[CrossRef] [PubMed]

Y. D. Wu, "Analyzing multilayer optical waveguide with a localized arbitrary nonlinear guiding film," IEEE J. Quantum Electron. 40, 529 (2004).
[CrossRef]

Y. D. Wu and D. H. Cai, "Analytical and numerical analyses of TE-polarized waves in the planner optical waveguides with the nonlinear guiding film," J. Eng. Technol. and Edu. 1, 19 (2004).

2002

Y. D. Wu, M. H. Chen, and H. J. Tasi, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737 (2002).
[CrossRef]

Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structure and the numerical simulation," J. Nat. Kao. Uni. of App. Sci. 32,133 (2002).

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Qunatum. Electron. 38, 37 (2002).
[CrossRef]

2001

F. Garzia, and M. Bertolotti, "All-optical security coded key," Opt. Quantum. Electron. 33, 527 (2001).
[CrossRef]

Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517 (2001).

Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II,  4594, 323 (2001).

1999

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

S. Blair and K. Wagner, "Spatialcsoliton angular deflection logic gates," Appl. Opt. 38, 6749 (1999).
[CrossRef]

1998

1995

Yi-Fan Li and K. Iizuka, "Unified nonlinear waveguide dispersion equations with our spurious roots," IEEE J. Quantum. Electron. 31, 791 (1995).
[CrossRef]

1990

1989

A. B. Aceves, J. V. Moloney, and A. C. Newell, "Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface," Phy. Rev. A. 39, 1809 (1989).
[CrossRef]

J. P. Sabini, N. Finalyson, and G. I. Stegeman, "All-optical switching in nonlinear X junctions." Appl. Phys. Lett. 55, 1176 (1989).
[CrossRef]

U. Trutschel, F. Lederer, and M. Golz, "Nonlinear guided waves in multiplayer systems," IEEE J. Quantum Electron 25, 194 (1989).
[CrossRef]

K. J. Blow, N. J. Doran, and B. K. Nayar, "Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac Interferometer," Opt. Lett. 14, 754 (1989).
[CrossRef] [PubMed]

1988

1987

L. Thylen, N. Finalayson, C. T. Seaton, and G. I. Stegeman, "All-optical guided-wave Mach-Zender switching device," Appl. Phys. Lett. 51, 1304 (1987).
[CrossRef]

P. A. Belanger and P. Mathieu, "Dark soliton in a Kerr defocusing medium," Appl. Opt. 26, 111 (1987).
[CrossRef] [PubMed]

Aceves, A. B.

A. B. Aceves, J. V. Moloney, and A. C. Newell, "Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface," Phy. Rev. A. 39, 1809 (1989).
[CrossRef]

Aitchison, J. S.

Belanger, P. A.

Bertolotti, M.

F. Garzia, and M. Bertolotti, "All-optical security coded key," Opt. Quantum. Electron. 33, 527 (2001).
[CrossRef]

Blair, S.

Blow, K. J.

Cai, D. H.

Y. D. Wu and D. H. Cai, "Analytical and numerical analyses of TE-polarized waves in the planner optical waveguides with the nonlinear guiding film," J. Eng. Technol. and Edu. 1, 19 (2004).

Chen, M. H.

Y. D Wu, Y. F. Laio, M. H. Chen, and K. H. Chiang, "Nonlinear all-optical phase and power-controlled switch by using the spatial solitons interaction," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds.Proc SPIE. 5646, 334-344 (2005).
[CrossRef]

M. H. Chen, Y. D. Wu, and R. Z. Tasy, "Analyses of antisymmetric modes of three-layer nonlinear optical waveguide," J. Nat. Kao. Uni. of App. Sci.,  34, 1 (2005).

Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structure and the numerical simulation," J. Nat. Kao. Uni. of App. Sci. 32,133 (2002).

Y. D. Wu, M. H. Chen, and H. J. Tasi, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737 (2002).
[CrossRef]

Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II,  4594, 323 (2001).

Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517 (2001).

Chen, M.-H.

Y. D. Wu and M.-H. Chen, "Method for analyzing multilayer nonlinear optical waveguide," Opt. Express. 137982 (2005).
[CrossRef] [PubMed]

Chiang, K. H.

Y. D Wu, Y. F. Laio, M. H. Chen, and K. H. Chiang, "Nonlinear all-optical phase and power-controlled switch by using the spatial solitons interaction," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds.Proc SPIE. 5646, 334-344 (2005).
[CrossRef]

Chou, H. F.

Chu, C. H.

Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517 (2001).

Doran, N. J.

Finalayson, N.

L. Thylen, N. Finalayson, C. T. Seaton, and G. I. Stegeman, "All-optical guided-wave Mach-Zender switching device," Appl. Phys. Lett. 51, 1304 (1987).
[CrossRef]

Finalyson, N.

J. P. Sabini, N. Finalyson, and G. I. Stegeman, "All-optical switching in nonlinear X junctions." Appl. Phys. Lett. 55, 1176 (1989).
[CrossRef]

Fouckhardt, H.

H. Fouckhardt and Y. Silberberg, "All-optical switching in waveguide X junctions," J. Opt. Soc. Am. B. 7, 803 (1990).
[CrossRef]

Friberg, S. R.

Garzia, F.

F. Garzia, and M. Bertolotti, "All-optical security coded key," Opt. Quantum. Electron. 33, 527 (2001).
[CrossRef]

Geshiro, M.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Qunatum. Electron. 38, 37 (2002).
[CrossRef]

Golz, M.

U. Trutschel, F. Lederer, and M. Golz, "Nonlinear guided waves in multiplayer systems," IEEE J. Quantum Electron 25, 194 (1989).
[CrossRef]

Izutsu, M.

Jackel, J. L.

Kitamura, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Qunatum. Electron. 38, 37 (2002).
[CrossRef]

Laio, Y. F.

Y. D Wu, Y. F. Laio, M. H. Chen, and K. H. Chiang, "Nonlinear all-optical phase and power-controlled switch by using the spatial solitons interaction," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds.Proc SPIE. 5646, 334-344 (2005).
[CrossRef]

Leaird, D. E.

Lederer, F.

U. Trutschel, F. Lederer, and M. Golz, "Nonlinear guided waves in multiplayer systems," IEEE J. Quantum Electron 25, 194 (1989).
[CrossRef]

Lin, C. F.

Mathieu, P.

Moloney, J. V.

A. B. Aceves, J. V. Moloney, and A. C. Newell, "Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface," Phy. Rev. A. 39, 1809 (1989).
[CrossRef]

Murata, H.

Nayar, B. K.

Newell, A. C.

A. B. Aceves, J. V. Moloney, and A. C. Newell, "Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface," Phy. Rev. A. 39, 1809 (1989).
[CrossRef]

Nishida, K.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Qunatum. Electron. 38, 37 (2002).
[CrossRef]

Oliver, M. K.

Sabini, J. P.

J. P. Sabini, N. Finalyson, and G. I. Stegeman, "All-optical switching in nonlinear X junctions." Appl. Phys. Lett. 55, 1176 (1989).
[CrossRef]

Sawa, S.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Qunatum. Electron. 38, 37 (2002).
[CrossRef]

Seaton, C. T.

L. Thylen, N. Finalayson, C. T. Seaton, and G. I. Stegeman, "All-optical guided-wave Mach-Zender switching device," Appl. Phys. Lett. 51, 1304 (1987).
[CrossRef]

Sfez, B. G.

She, S.

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

Silberberg, Y.

Smith, P. S.

Smith, P. W. E.

Stegeman, G. I.

J. P. Sabini, N. Finalyson, and G. I. Stegeman, "All-optical switching in nonlinear X junctions." Appl. Phys. Lett. 55, 1176 (1989).
[CrossRef]

L. Thylen, N. Finalayson, C. T. Seaton, and G. I. Stegeman, "All-optical guided-wave Mach-Zender switching device," Appl. Phys. Lett. 51, 1304 (1987).
[CrossRef]

Sueta, T.

Tasi, H. J.

Y. D. Wu, M. H. Chen, and H. J. Tasi, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737 (2002).
[CrossRef]

Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II,  4594, 323 (2001).

Tasy, R. Z.

M. H. Chen, Y. D. Wu, and R. Z. Tasy, "Analyses of antisymmetric modes of three-layer nonlinear optical waveguide," J. Nat. Kao. Uni. of App. Sci.,  34, 1 (2005).

Thylen, L.

L. Thylen, N. Finalayson, C. T. Seaton, and G. I. Stegeman, "All-optical guided-wave Mach-Zender switching device," Appl. Phys. Lett. 51, 1304 (1987).
[CrossRef]

Trutschel, U.

U. Trutschel, F. Lederer, and M. Golz, "Nonlinear guided waves in multiplayer systems," IEEE J. Quantum Electron 25, 194 (1989).
[CrossRef]

Vogel, E. M.

Wagner, K.

Wang, G. C.

Weiner, A. M.

Wu, Y. D

Y. D Wu, Y. F. Laio, M. H. Chen, and K. H. Chiang, "Nonlinear all-optical phase and power-controlled switch by using the spatial solitons interaction," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds.Proc SPIE. 5646, 334-344 (2005).
[CrossRef]

Wu, Y. D.

Y. D. Wu and M.-H. Chen, "Method for analyzing multilayer nonlinear optical waveguide," Opt. Express. 137982 (2005).
[CrossRef] [PubMed]

Y. D. Wu, "1xN all-optical switching device by using the phase modulation of spatial solitons," Appl. Opt. 44, 4114 (2005).
[CrossRef]

Y. D. Wu, "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron. 11, 307 (2005).
[CrossRef]

M. H. Chen, Y. D. Wu, and R. Z. Tasy, "Analyses of antisymmetric modes of three-layer nonlinear optical waveguide," J. Nat. Kao. Uni. of App. Sci.,  34, 1 (2005).

Y. D. Wu, "Analyzing multilayer optical waveguide with a localized arbitrary nonlinear guiding film," IEEE J. Quantum Electron. 40, 529 (2004).
[CrossRef]

Y. D. Wu and D. H. Cai, "Analytical and numerical analyses of TE-polarized waves in the planner optical waveguides with the nonlinear guiding film," J. Eng. Technol. and Edu. 1, 19 (2004).

Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt. 23, 387 (2004).
[CrossRef]

Y. D. Wu, "New all-optical wavelength auto-router based on spatial solitons," Opt. Express. 12, 4172 (2004).
[CrossRef] [PubMed]

Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structure and the numerical simulation," J. Nat. Kao. Uni. of App. Sci. 32,133 (2002).

Y. D. Wu, M. H. Chen, and H. J. Tasi, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737 (2002).
[CrossRef]

Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II,  4594, 323 (2001).

Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517 (2001).

Yabu, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Qunatum. Electron. 38, 37 (2002).
[CrossRef]

Zhang, S.

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. P. Sabini, N. Finalyson, and G. I. Stegeman, "All-optical switching in nonlinear X junctions." Appl. Phys. Lett. 55, 1176 (1989).
[CrossRef]

L. Thylen, N. Finalayson, C. T. Seaton, and G. I. Stegeman, "All-optical guided-wave Mach-Zender switching device," Appl. Phys. Lett. 51, 1304 (1987).
[CrossRef]

Fiber Integr. Opt.

Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517 (2001).

Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt. 23, 387 (2004).
[CrossRef]

IEEE J. Quantum Electron

U. Trutschel, F. Lederer, and M. Golz, "Nonlinear guided waves in multiplayer systems," IEEE J. Quantum Electron 25, 194 (1989).
[CrossRef]

IEEE J. Quantum Electron.

Y. D. Wu, "Analyzing multilayer optical waveguide with a localized arbitrary nonlinear guiding film," IEEE J. Quantum Electron. 40, 529 (2004).
[CrossRef]

IEEE J. Quantum. Electron.

Yi-Fan Li and K. Iizuka, "Unified nonlinear waveguide dispersion equations with our spurious roots," IEEE J. Quantum. Electron. 31, 791 (1995).
[CrossRef]

IEEE J. Qunatum. Electron.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Qunatum. Electron. 38, 37 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron.

Y. D. Wu, "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron. 11, 307 (2005).
[CrossRef]

J. Eng. Technol. and Edu.

Y. D. Wu and D. H. Cai, "Analytical and numerical analyses of TE-polarized waves in the planner optical waveguides with the nonlinear guiding film," J. Eng. Technol. and Edu. 1, 19 (2004).

J. Lightwave Technol.

J. Nat. Kao. Uni. of App. Sci.

Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structure and the numerical simulation," J. Nat. Kao. Uni. of App. Sci. 32,133 (2002).

M. H. Chen, Y. D. Wu, and R. Z. Tasy, "Analyses of antisymmetric modes of three-layer nonlinear optical waveguide," J. Nat. Kao. Uni. of App. Sci.,  34, 1 (2005).

J. Opt. Soc. Am. B.

H. Fouckhardt and Y. Silberberg, "All-optical switching in waveguide X junctions," J. Opt. Soc. Am. B. 7, 803 (1990).
[CrossRef]

Y. D. Wu, M. H. Chen, and H. J. Tasi, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737 (2002).
[CrossRef]

Opt. Commun.

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

Opt. Express.

Y. D. Wu and M.-H. Chen, "Method for analyzing multilayer nonlinear optical waveguide," Opt. Express. 137982 (2005).
[CrossRef] [PubMed]

Y. D. Wu, "New all-optical wavelength auto-router based on spatial solitons," Opt. Express. 12, 4172 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Quantum. Electron.

F. Garzia, and M. Bertolotti, "All-optical security coded key," Opt. Quantum. Electron. 33, 527 (2001).
[CrossRef]

Phy. Rev. A.

A. B. Aceves, J. V. Moloney, and A. C. Newell, "Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface," Phy. Rev. A. 39, 1809 (1989).
[CrossRef]

Proc SPIE.

Y. D Wu, Y. F. Laio, M. H. Chen, and K. H. Chiang, "Nonlinear all-optical phase and power-controlled switch by using the spatial solitons interaction," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds.Proc SPIE. 5646, 334-344 (2005).
[CrossRef]

SPIE Design, Fabrication, and Characterization of Photonic Device II

Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II,  4594, 323 (2001).

Other

Y. D. Wu, Y. F. Laio, and M. H. Chiang, "A new all-optical phase-controlled routing switch," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds. Proc. SPIE. 5646, 345-357 (2005).
[CrossRef]

Y. H. Pramono, and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater. 10, 209 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The proposed 1×N all-optical switching device.

Fig. 2.
Fig. 2.

The position shift Δd is plotted as a function of the left normalized control power Pc /Po when the width of each guiding film W=1.5μm and the separated distance S=2.5μm.

Fig. 3.
Fig. 3.

The proposed 1×9 all-optical switching device.

Fig. 4.
Fig. 4.

The evolutions of the signal beam propagating along the structure without the control beam.

Fig. 5.
Fig. 5.

The evolutions of the signal beam propagating along the structure with the left control beam at Pc=0.832Po, Δd=2μm.

Fig. 6.
Fig. 6.

The evolutions of the signal beam propagating along the structure with the left control beam at Pc=0.864Po, Δd=4μm

Fig. 7.
Fig. 7.

The evolutions of the signal beam propagating along the structure with the left control beam at Pc=0.91Po, Δd=6μm

Fig. 8.
Fig. 8.

The evolutions of the signal beam propagating along the structure with the left control beam at Pc=1.02 Po, Δd=8μm

Fig. 9.
Fig. 9.

The position shift Δd is plotted as a function of the left normalized control power Pc /Po when the signal power Po=0.07W/mm and the width of each guiding film W= 1.5 μm.

Fig. 10.
Fig. 10.

The position shift Δd is plotted as a function of the left normalized control power Pc /Po when the signal power Po=0.07W/mm and and the separated distance S=2.5 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε x z t = E x z exp [ j ( β k 0 z wt ) ]
2 k 0 E z + 2 E x 2 + k 0 2 [ n i 2 x z E 2 β 2 ] E = 0 i = f , c , u
n i 2 = n io 2 + α E 2

Metrics