Abstract

An experimental and theoretical investigation of the nonlinear transmission coefficient in a set of Ytterbium-doped silica fibers (YFs) with various concentrations of Yb3+ ions at continuous-wave 980-nm pumping is reported. An analysis of the obtained experimental data shows that YF transmission coefficient is notably affected by the presence of Yb3+ - Yb3+ ion-pairs in the fibers, especially in heavily-doped ones. The last fact is confirmed by the study of the cooperative luminescence and absorption effects in the fibers, where a detailed inspection of their dependence on Yb3+ concentration is presented. The pairs’ effect is shown to seriously modify both the nonlinear character of YF transmission coefficient at λ = 980 nm and Yb3+ excited-state relaxation. A modeling of the experimental data is performed, which allows to find the coefficients addressing the pairs’ effect in each of YFs under study and, as a result, to fit the experimentally measured dependences of YF transmission coefficient on pump power, fiber length, and Yb3+ concentration.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. F. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, 1993).
  2. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
    [CrossRef]
  3. R. Pashotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
    [CrossRef]
  4. J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
    [CrossRef]
  5. E. Nakazawa and S. Shionoya, "Cooperative luminescence in YbPO4," Phys. Rev. Lett. 25, 1710-17121970.
    [CrossRef]
  6. H. J. Schugar, E. I. Solomon, W. L. Cleveland, and L. Goodman, "Simultaneous pair electronic transitions in Yb2O3," J. Amer. Chem. Soc. 97, 6442-6450 (1975).
    [CrossRef]
  7. F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, "Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals," Opt. Mater. 4, 35-411994.
    [CrossRef]
  8. E. Montoya, O. Espeso, and L. E. Bausa, "Cooperative luminescence in Yb3+:LiNbO3," J. Luminesc. 87-89, 1036-1038 (2000).
    [CrossRef]
  9. L. A. Diaz-Torres, E. de la Rosa, P. Salas, and H. Desirena, "Enhanced cooperative absorption and up-conversion in Yb3+ doped YAG nanophosphors," Opt. Mater. 27, 1305-1310 (2005).
    [CrossRef]
  10. M. Malinowski, M. Kazckan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, "Cooperative emission in Yb3+:YAG planar epitaxial waveguides," J. Luminesc. 94-95, 29-332001.
    [CrossRef]
  11. S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, "Cooperative luminescence in an ytterbium-doped silica fiber," Optics. Commun. 111, 310-316 (1994).
    [CrossRef]
  12. Y. G. Choi, Y. B. Shin, H. S. Seo, and K. H. Kim, "Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber," Chem. Phys. Lett. 364, 200-205 (2002).
    [CrossRef]
  13. M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
    [CrossRef]
  14. A. V. Kir’yanov, V. P. Minkovich, Yu. O. Barmenkov, M. A. Martinez Gamez, and A. Martinez-Rios, "Multi-wavelength visible up-converted luminescence in novel heavily doped Ytterbium-Holmium silica fiber under low-power IR diode pumping," J. Luminesc. 111, 1-8 (2005).
    [CrossRef]
  15. T. G. Ryan and S. D. Jackson, "Cooperative luminescence and absorption in ytterbium doped aluminosilicate glass optical fibres and performs," Conference Digest (30-th Australian Conference on Optical Fibre Technology, 4-8 July 2005, Star City, Sydney, Australia).
  16. A. S. Kurkov and E. M. Dianov, "Moderate-power cw fibre lasers," Quantum. Electron. 34, 881-900 (2004).
    [CrossRef]
  17. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000).
    [CrossRef]
  18. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, "Theoretical modeling of S-band Thulium-doped silica fiber amplifiers," Opt. Quantum. Electron. 36, 201-2122004.
    [CrossRef]
  19. A. V. Kir’yanov, Yu. O. Barmenkov, and N. N. Il’ichev, "Excited-state absorption and ion pairs as sources of nonlinear losses in heavily-doped Erbium silica fiber and Erbium fiber laser," Opt. Express 13, 8498-8507 (2005).
    [CrossRef] [PubMed]
  20. E. Desurvire, Erbium-Doped Fiber Amplifiers. Principles and Applications (Wiley, 1994).
  21. X. Zou and H. Toratani, "Evaluation of spectroscopic properties of Yb3+-doped glasses," Phys. Rev. B 52, 15889-15897, (1995).
    [CrossRef]
  22. M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. B. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004).
    [CrossRef]

2005 (3)

L. A. Diaz-Torres, E. de la Rosa, P. Salas, and H. Desirena, "Enhanced cooperative absorption and up-conversion in Yb3+ doped YAG nanophosphors," Opt. Mater. 27, 1305-1310 (2005).
[CrossRef]

A. V. Kir’yanov, V. P. Minkovich, Yu. O. Barmenkov, M. A. Martinez Gamez, and A. Martinez-Rios, "Multi-wavelength visible up-converted luminescence in novel heavily doped Ytterbium-Holmium silica fiber under low-power IR diode pumping," J. Luminesc. 111, 1-8 (2005).
[CrossRef]

A. V. Kir’yanov, Yu. O. Barmenkov, and N. N. Il’ichev, "Excited-state absorption and ion pairs as sources of nonlinear losses in heavily-doped Erbium silica fiber and Erbium fiber laser," Opt. Express 13, 8498-8507 (2005).
[CrossRef] [PubMed]

2004 (3)

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, "Theoretical modeling of S-band Thulium-doped silica fiber amplifiers," Opt. Quantum. Electron. 36, 201-2122004.
[CrossRef]

A. S. Kurkov and E. M. Dianov, "Moderate-power cw fibre lasers," Quantum. Electron. 34, 881-900 (2004).
[CrossRef]

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. B. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004).
[CrossRef]

2003 (1)

J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
[CrossRef]

2002 (2)

Y. G. Choi, Y. B. Shin, H. S. Seo, and K. H. Kim, "Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber," Chem. Phys. Lett. 364, 200-205 (2002).
[CrossRef]

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

2001 (1)

M. Malinowski, M. Kazckan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, "Cooperative emission in Yb3+:YAG planar epitaxial waveguides," J. Luminesc. 94-95, 29-332001.
[CrossRef]

2000 (2)

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000).
[CrossRef]

E. Montoya, O. Espeso, and L. E. Bausa, "Cooperative luminescence in Yb3+:LiNbO3," J. Luminesc. 87-89, 1036-1038 (2000).
[CrossRef]

1997 (1)

R. Pashotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

1995 (2)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
[CrossRef]

X. Zou and H. Toratani, "Evaluation of spectroscopic properties of Yb3+-doped glasses," Phys. Rev. B 52, 15889-15897, (1995).
[CrossRef]

1994 (2)

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, "Cooperative luminescence in an ytterbium-doped silica fiber," Optics. Commun. 111, 310-316 (1994).
[CrossRef]

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, "Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals," Opt. Mater. 4, 35-411994.
[CrossRef]

1975 (1)

H. J. Schugar, E. I. Solomon, W. L. Cleveland, and L. Goodman, "Simultaneous pair electronic transitions in Yb2O3," J. Amer. Chem. Soc. 97, 6442-6450 (1975).
[CrossRef]

1970 (1)

E. Nakazawa and S. Shionoya, "Cooperative luminescence in YbPO4," Phys. Rev. Lett. 25, 1710-17121970.
[CrossRef]

Auzel, F.

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, "Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals," Opt. Mater. 4, 35-411994.
[CrossRef]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
[CrossRef]

Barmenkov, Yu. O.

A. V. Kir’yanov, V. P. Minkovich, Yu. O. Barmenkov, M. A. Martinez Gamez, and A. Martinez-Rios, "Multi-wavelength visible up-converted luminescence in novel heavily doped Ytterbium-Holmium silica fiber under low-power IR diode pumping," J. Luminesc. 111, 1-8 (2005).
[CrossRef]

A. V. Kir’yanov, Yu. O. Barmenkov, and N. N. Il’ichev, "Excited-state absorption and ion pairs as sources of nonlinear losses in heavily-doped Erbium silica fiber and Erbium fiber laser," Opt. Express 13, 8498-8507 (2005).
[CrossRef] [PubMed]

Bausa, L. E.

E. Montoya, O. Espeso, and L. E. Bausa, "Cooperative luminescence in Yb3+:LiNbO3," J. Luminesc. 87-89, 1036-1038 (2000).
[CrossRef]

Blanc, W.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, "Theoretical modeling of S-band Thulium-doped silica fiber amplifiers," Opt. Quantum. Electron. 36, 201-2122004.
[CrossRef]

Bufetov, I. A.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. B. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004).
[CrossRef]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
[CrossRef]

Choi, Y. G.

Y. G. Choi, Y. B. Shin, H. S. Seo, and K. H. Kim, "Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber," Chem. Phys. Lett. 364, 200-205 (2002).
[CrossRef]

Clarkson, A.

J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
[CrossRef]

Cleveland, W. L.

H. J. Schugar, E. I. Solomon, W. L. Cleveland, and L. Goodman, "Simultaneous pair electronic transitions in Yb2O3," J. Amer. Chem. Soc. 97, 6442-6450 (1975).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
[CrossRef]

de la Rosa, E.

L. A. Diaz-Torres, E. de la Rosa, P. Salas, and H. Desirena, "Enhanced cooperative absorption and up-conversion in Yb3+ doped YAG nanophosphors," Opt. Mater. 27, 1305-1310 (2005).
[CrossRef]

Desirena, H.

L. A. Diaz-Torres, E. de la Rosa, P. Salas, and H. Desirena, "Enhanced cooperative absorption and up-conversion in Yb3+ doped YAG nanophosphors," Opt. Mater. 27, 1305-1310 (2005).
[CrossRef]

Dianov, E. M.

A. S. Kurkov and E. M. Dianov, "Moderate-power cw fibre lasers," Quantum. Electron. 34, 881-900 (2004).
[CrossRef]

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. B. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004).
[CrossRef]

Diaz-Torres, L. A.

L. A. Diaz-Torres, E. de la Rosa, P. Salas, and H. Desirena, "Enhanced cooperative absorption and up-conversion in Yb3+ doped YAG nanophosphors," Opt. Mater. 27, 1305-1310 (2005).
[CrossRef]

Druetta, M.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, "Cooperative luminescence in an ytterbium-doped silica fiber," Optics. Commun. 111, 310-316 (1994).
[CrossRef]

Dussardier, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, "Theoretical modeling of S-band Thulium-doped silica fiber amplifiers," Opt. Quantum. Electron. 36, 201-2122004.
[CrossRef]

Espeso, O.

E. Montoya, O. Espeso, and L. E. Bausa, "Cooperative luminescence in Yb3+:LiNbO3," J. Luminesc. 87-89, 1036-1038 (2000).
[CrossRef]

Faure, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, "Theoretical modeling of S-band Thulium-doped silica fiber amplifiers," Opt. Quantum. Electron. 36, 201-2122004.
[CrossRef]

Ferdinand, P.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, "Cooperative luminescence in an ytterbium-doped silica fiber," Optics. Commun. 111, 310-316 (1994).
[CrossRef]

Fider, D.

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

Frukacz, Z.

M. Malinowski, M. Kazckan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, "Cooperative emission in Yb3+:YAG planar epitaxial waveguides," J. Luminesc. 94-95, 29-332001.
[CrossRef]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000).
[CrossRef]

Goldner, P.

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, "Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals," Opt. Mater. 4, 35-411994.
[CrossRef]

Goodman, L.

H. J. Schugar, E. I. Solomon, W. L. Cleveland, and L. Goodman, "Simultaneous pair electronic transitions in Yb2O3," J. Amer. Chem. Soc. 97, 6442-6450 (1975).
[CrossRef]

Goure, J. P.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, "Cooperative luminescence in an ytterbium-doped silica fiber," Optics. Commun. 111, 310-316 (1994).
[CrossRef]

Grudinin, A. B.

J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
[CrossRef]

Gudel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000).
[CrossRef]

Hanna, D. C.

R. Pashotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
[CrossRef]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000).
[CrossRef]

Huber, G.

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

Il’ichev, N. N.

Jeong, Y.

J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
[CrossRef]

Karasek, M.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, "Theoretical modeling of S-band Thulium-doped silica fiber amplifiers," Opt. Quantum. Electron. 36, 201-2122004.
[CrossRef]

Kazckan, M.

M. Malinowski, M. Kazckan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, "Cooperative emission in Yb3+:YAG planar epitaxial waveguides," J. Luminesc. 94-95, 29-332001.
[CrossRef]

Kim, K. H.

Y. G. Choi, Y. B. Shin, H. S. Seo, and K. H. Kim, "Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber," Chem. Phys. Lett. 364, 200-205 (2002).
[CrossRef]

Kir’yanov, A. V.

A. V. Kir’yanov, V. P. Minkovich, Yu. O. Barmenkov, M. A. Martinez Gamez, and A. Martinez-Rios, "Multi-wavelength visible up-converted luminescence in novel heavily doped Ytterbium-Holmium silica fiber under low-power IR diode pumping," J. Luminesc. 111, 1-8 (2005).
[CrossRef]

A. V. Kir’yanov, Yu. O. Barmenkov, and N. N. Il’ichev, "Excited-state absorption and ion pairs as sources of nonlinear losses in heavily-doped Erbium silica fiber and Erbium fiber laser," Opt. Express 13, 8498-8507 (2005).
[CrossRef] [PubMed]

Kravtsov, K. S.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. B. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004).
[CrossRef]

Kurkov, A. S.

A. S. Kurkov and E. M. Dianov, "Moderate-power cw fibre lasers," Quantum. Electron. 34, 881-900 (2004).
[CrossRef]

Loutts, G. B.

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

Lucas, B. D.

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

Luthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000).
[CrossRef]

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
[CrossRef]

Magne, S.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, "Cooperative luminescence in an ytterbium-doped silica fiber," Optics. Commun. 111, 310-316 (1994).
[CrossRef]

Malinowski, M.

M. Malinowski, M. Kazckan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, "Cooperative emission in Yb3+:YAG planar epitaxial waveguides," J. Luminesc. 94-95, 29-332001.
[CrossRef]

Meichenin, D.

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, "Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals," Opt. Mater. 4, 35-411994.
[CrossRef]

Mel’kumov, M. A.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. B. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004).
[CrossRef]

Minkovich, V. P.

A. V. Kir’yanov, V. P. Minkovich, Yu. O. Barmenkov, M. A. Martinez Gamez, and A. Martinez-Rios, "Multi-wavelength visible up-converted luminescence in novel heavily doped Ytterbium-Holmium silica fiber under low-power IR diode pumping," J. Luminesc. 111, 1-8 (2005).
[CrossRef]

Mix, E.

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

Monnom, G.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, "Cooperative luminescence in an ytterbium-doped silica fiber," Optics. Commun. 111, 310-316 (1994).
[CrossRef]

Montoya, E.

E. Montoya, O. Espeso, and L. E. Bausa, "Cooperative luminescence in Yb3+:LiNbO3," J. Luminesc. 87-89, 1036-1038 (2000).
[CrossRef]

Nakazawa, E.

E. Nakazawa and S. Shionoya, "Cooperative luminescence in YbPO4," Phys. Rev. Lett. 25, 1710-17121970.
[CrossRef]

Nilsson, J.

J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
[CrossRef]

R. Pashotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

Ouerdane, Y.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, "Cooperative luminescence in an ytterbium-doped silica fiber," Optics. Commun. 111, 310-316 (1994).
[CrossRef]

Pashotta, R.

R. Pashotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
[CrossRef]

Pelle, F.

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, "Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals," Opt. Mater. 4, 35-411994.
[CrossRef]

Peterka, P.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, "Theoretical modeling of S-band Thulium-doped silica fiber amplifiers," Opt. Quantum. Electron. 36, 201-2122004.
[CrossRef]

Peters, V.

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

Piramidowicz, R.

M. Malinowski, M. Kazckan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, "Cooperative emission in Yb3+:YAG planar epitaxial waveguides," J. Luminesc. 94-95, 29-332001.
[CrossRef]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000).
[CrossRef]

Sahu, J. K.

J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
[CrossRef]

Salas, P.

L. A. Diaz-Torres, E. de la Rosa, P. Salas, and H. Desirena, "Enhanced cooperative absorption and up-conversion in Yb3+ doped YAG nanophosphors," Opt. Mater. 27, 1305-1310 (2005).
[CrossRef]

Sarnecki, J.

M. Malinowski, M. Kazckan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, "Cooperative emission in Yb3+:YAG planar epitaxial waveguides," J. Luminesc. 94-95, 29-332001.
[CrossRef]

Schugar, H. J.

H. J. Schugar, E. I. Solomon, W. L. Cleveland, and L. Goodman, "Simultaneous pair electronic transitions in Yb2O3," J. Amer. Chem. Soc. 97, 6442-6450 (1975).
[CrossRef]

Selvas, R.

J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
[CrossRef]

Seo, H. S.

Y. G. Choi, Y. B. Shin, H. S. Seo, and K. H. Kim, "Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber," Chem. Phys. Lett. 364, 200-205 (2002).
[CrossRef]

Shaif-Ul, A.

J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
[CrossRef]

Shin, Y. B.

Y. G. Choi, Y. B. Shin, H. S. Seo, and K. H. Kim, "Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber," Chem. Phys. Lett. 364, 200-205 (2002).
[CrossRef]

Shionoya, S.

E. Nakazawa and S. Shionoya, "Cooperative luminescence in YbPO4," Phys. Rev. Lett. 25, 1710-17121970.
[CrossRef]

Shubin, A. B.

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. B. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004).
[CrossRef]

Solomon, E. I.

H. J. Schugar, E. I. Solomon, W. L. Cleveland, and L. Goodman, "Simultaneous pair electronic transitions in Yb2O3," J. Amer. Chem. Soc. 97, 6442-6450 (1975).
[CrossRef]

Steward, C. S.

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

Toratani, H.

X. Zou and H. Toratani, "Evaluation of spectroscopic properties of Yb3+-doped glasses," Phys. Rev. B 52, 15889-15897, (1995).
[CrossRef]

Tropper, A. C.

R. Pashotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
[CrossRef]

Zou, X.

X. Zou and H. Toratani, "Evaluation of spectroscopic properties of Yb3+-doped glasses," Phys. Rev. B 52, 15889-15897, (1995).
[CrossRef]

Chem. Phys. Lett. (1)

Y. G. Choi, Y. B. Shin, H. S. Seo, and K. H. Kim, "Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber," Chem. Phys. Lett. 364, 200-205 (2002).
[CrossRef]

IEEE J. Quantum. Electron. (1)

R. Pashotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-12 (1995).
[CrossRef]

J. Amer. Chem. Soc. (1)

H. J. Schugar, E. I. Solomon, W. L. Cleveland, and L. Goodman, "Simultaneous pair electronic transitions in Yb2O3," J. Amer. Chem. Soc. 97, 6442-6450 (1975).
[CrossRef]

J. Luminesc. (4)

E. Montoya, O. Espeso, and L. E. Bausa, "Cooperative luminescence in Yb3+:LiNbO3," J. Luminesc. 87-89, 1036-1038 (2000).
[CrossRef]

M. A. Noginov, G. B. Loutts, C. S. Steward, B. D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, "Spectroscopic study of Yb doped oxide crystals for intrinsic bistability," J. Luminesc. 96, 129-140 (2002).
[CrossRef]

A. V. Kir’yanov, V. P. Minkovich, Yu. O. Barmenkov, M. A. Martinez Gamez, and A. Martinez-Rios, "Multi-wavelength visible up-converted luminescence in novel heavily doped Ytterbium-Holmium silica fiber under low-power IR diode pumping," J. Luminesc. 111, 1-8 (2005).
[CrossRef]

M. Malinowski, M. Kazckan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, "Cooperative emission in Yb3+:YAG planar epitaxial waveguides," J. Luminesc. 94-95, 29-332001.
[CrossRef]

Opt. Express (1)

Opt. Mater. (2)

L. A. Diaz-Torres, E. de la Rosa, P. Salas, and H. Desirena, "Enhanced cooperative absorption and up-conversion in Yb3+ doped YAG nanophosphors," Opt. Mater. 27, 1305-1310 (2005).
[CrossRef]

F. Auzel, D. Meichenin, F. Pelle, and P. Goldner, "Cooperative luminescence as a defining process for RE-ions clustering in glasses and crystals," Opt. Mater. 4, 35-411994.
[CrossRef]

Opt. Quantum. Electron. (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, "Theoretical modeling of S-band Thulium-doped silica fiber amplifiers," Opt. Quantum. Electron. 36, 201-2122004.
[CrossRef]

Optics. Commun. (1)

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, "Cooperative luminescence in an ytterbium-doped silica fiber," Optics. Commun. 111, 310-316 (1994).
[CrossRef]

Phys. Rev. B (2)

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000).
[CrossRef]

X. Zou and H. Toratani, "Evaluation of spectroscopic properties of Yb3+-doped glasses," Phys. Rev. B 52, 15889-15897, (1995).
[CrossRef]

Phys. Rev. Lett. (1)

E. Nakazawa and S. Shionoya, "Cooperative luminescence in YbPO4," Phys. Rev. Lett. 25, 1710-17121970.
[CrossRef]

Proc. SPIE (1)

J. Nilsson, J. K. Sahu, Y. Jeong, A. Clarkson, R. Selvas, A. B. Grudinin, and A. Shaif-Ul, "High power fiber lasers," Proc. SPIE 4974, 50-592003.
[CrossRef]

Quantum Electron. (1)

M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. B. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004).
[CrossRef]

Quantum. Electron. (1)

A. S. Kurkov and E. M. Dianov, "Moderate-power cw fibre lasers," Quantum. Electron. 34, 881-900 (2004).
[CrossRef]

Other (3)

T. G. Ryan and S. D. Jackson, "Cooperative luminescence and absorption in ytterbium doped aluminosilicate glass optical fibres and performs," Conference Digest (30-th Australian Conference on Optical Fibre Technology, 4-8 July 2005, Star City, Sydney, Australia).

M. J. F. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, 1993).

E. Desurvire, Erbium-Doped Fiber Amplifiers. Principles and Applications (Wiley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Images of YFs ## 1 (a), 3 (b), and 5 (c) obtained at white-light illumination.

Fig. 2.
Fig. 2.

Visible cooperative luminescence from YF # 3 pumped at λ = 980 nm.

Fig. 3.
Fig. 3.

Luminescence spectra of YFs ## 1, 3, and 5 under the diode laser pumping (λ = 980 nm, pump power Pin = 200 mW).

Fig. 4.
Fig. 4.

Dependences of IR (black curves) and visible cooperative (green curves) luminescence power versus IR (λ = 980 nm) pump power in two measurement geometries: lateral (a) and frontal (b). Slopes of the curves characterize the value of emission quanta per quanta of pumping radiation.

Fig. 5.
Fig. 5.

Absorption spectra of YFs ## 1, 3, and 5 in IR (a) and visible (b) spectral ranges.

Fig. 6.
Fig. 6.

Absorption (a) and emission (b) spectra in the visible (lower scale) and IR (upper scale): Curve 1 (black) - experimental IR spectra; Curve 2 (red) - self-convoluted IR spectra; and Curve 3 (blue) - experimental visible spectra. All the data are for YF #3.

Fig. 7.
Fig. 7.

Dependences of cooperative absorption coefficient in visible (λ = 475 nm) (a) and ratio of cooperative visible to fundamental IR luminescence powers (b) on IR absorption coefficient (λ = 976 nm) in YFs ## 1 – 5.

Fig. 8.
Fig. 8.

Experimental (left) and theoretical (right) dependences of transmission coefficient T of YFs ## 1 (a), 3 (b), and 5 (c) on launched pump power Pin at different lengths L of the fiber samples.

Fig. 9.
Fig. 9.

Scheme of energy levels and main processes involved at excitation of YF with λ ≈ 1-μm pump light.

Fig. 10.
Fig. 10.

Dependences of pairs’ coefficients β (a) and τp (b) on IR absorption coefficient (λ = 976 nm) in YFs ## 1 – 5.

Fig. 11.
Fig. 11.

Fundamental 1-μm luminescence decay in YF # 3 after pump switching-off: Open circles – experimental data; curves 1 (red line) and 2 (green line) – respectively, its fits by one and two exponents.

Tables (2)

Tables Icon

Table 1. Parameters of Ytterbium-doped fibers used in experiments.

Tables Icon

Table 2. Parameters taken at modeling.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I VIS ( E ) = I IR ( E ' ) I IR ( E E ' ) d E ' ,
dP dz = α 0 Γ P ( 1 ξ n 2 ) γ 0 P ,
α 0 Γ N 0 S r ( 1 ξ n 2 ) P n 2 τ 0 n 2 2 τ p = 0 ,

Metrics