Abstract

A high performance dye-doped cholesteric liquid crystal (CLC) laser is demonstrated by incorporating a passive CLC reflector to the active cell. The polarization-conserved CLC reflector effectively increases the distributed feedback cavity length which, in turn, results in a significant enhancement in lasing efficiency and a dramatic reduction in beam divergence. The lasing characteristics are still dominated by the circularly polarized light with the same sense as the cholesteric helix.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, "Lasing in chiral photonic structures," Prog. Quantum Electron. 27, 369-416 (2003).
    [CrossRef]
  2. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays. (Wiley, New York, 2001).
  3. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  4. V. I. Kopp, B. Fan, H. K. M. Vithana, A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998).
    [CrossRef]
  5. S. Y. Lin, J. G. Fleming, and I. Ei-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
    [CrossRef]
  6. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshina, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
    [CrossRef]
  7. W. Y. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase," Nat. Mater. 1, 111-113 (2002).
    [CrossRef]
  8. T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photo polymerized cholesteric liquid crystal," Appl. Phys. Lett. 81,3741-3743 (2002).
    [CrossRef]
  9. T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
    [CrossRef]
  10. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
    [CrossRef]
  11. P. V. Hibaev, V. Opp, A. Enack, and E. Anelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30, 1391-1400 (2003).
    [CrossRef]
  12. Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, "Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility," Opt. Express 14, 1236-1241 (2006).
    [CrossRef] [PubMed]
  13. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals," Appl. Phys. Lett. 82, 16-18 (2003).
    [CrossRef]
  14. M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004).
    [CrossRef]
  15. Y. Huang, Y. Zhou, and S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88, 011107 (2006).
    [CrossRef]
  16. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
    [CrossRef]
  17. A. Y. G. Fuh, T. H. Lin, J. H. Liu, and F. C. Wu, "Lasing in chiral photonic liquid crystals and associated frequency tuning," Opt. Express 12, 1857-1863 (2004).
    [CrossRef] [PubMed]
  18. Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87, 231107 (2005).
    [CrossRef]
  19. Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
    [CrossRef]

2006 (3)

Y. Huang, Y. Zhou, and S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88, 011107 (2006).
[CrossRef]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, "Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility," Opt. Express 14, 1236-1241 (2006).
[CrossRef] [PubMed]

2005 (1)

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87, 231107 (2005).
[CrossRef]

2004 (3)

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004).
[CrossRef]

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

A. Y. G. Fuh, T. H. Lin, J. H. Liu, and F. C. Wu, "Lasing in chiral photonic liquid crystals and associated frequency tuning," Opt. Express 12, 1857-1863 (2004).
[CrossRef] [PubMed]

2003 (5)

P. V. Hibaev, V. Opp, A. Enack, and E. Anelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30, 1391-1400 (2003).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals," Appl. Phys. Lett. 82, 16-18 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. Ei-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, "Lasing in chiral photonic structures," Prog. Quantum Electron. 27, 369-416 (2003).
[CrossRef]

2002 (3)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshina, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

W. Y. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase," Nat. Mater. 1, 111-113 (2002).
[CrossRef]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photo polymerized cholesteric liquid crystal," Appl. Phys. Lett. 81,3741-3743 (2002).
[CrossRef]

2001 (1)

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

1998 (1)

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Anelt, E.

P. V. Hibaev, V. Opp, A. Enack, and E. Anelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30, 1391-1400 (2003).
[CrossRef]

Araoka, F.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Bailey, C.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004).
[CrossRef]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Bass, M.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87, 231107 (2005).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Cao, W.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004).
[CrossRef]

Cao, W. Y.

W. Y. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase," Nat. Mater. 1, 111-113 (2002).
[CrossRef]

Carvalho, I. C. S.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004).
[CrossRef]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Doyle, C.

Ei-Kady, I.

S. Y. Lin, J. G. Fleming, and I. Ei-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

Enack, A.

P. V. Hibaev, V. Opp, A. Enack, and E. Anelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30, 1391-1400 (2003).
[CrossRef]

Fan, B.

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, and I. Ei-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

Fuh, A. Y. G.

Funamoto, K.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photo polymerized cholesteric liquid crystal," Appl. Phys. Lett. 81,3741-3743 (2002).
[CrossRef]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals," Appl. Phys. Lett. 82, 16-18 (2003).
[CrossRef]

Ganzke, D.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshina, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Genack, A. Z.

Haase, W.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshina, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Hibaev, P. V.

P. V. Hibaev, V. Opp, A. Enack, and E. Anelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30, 1391-1400 (2003).
[CrossRef]

Hong, Q.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Huang, Y.

Y. Huang, Y. Zhou, and S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88, 011107 (2006).
[CrossRef]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87, 231107 (2005).
[CrossRef]

Huang, Y. H.

Ishkawa, K.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Kasano, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshina, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Kopp, V. I.

Lin, S. Y.

S. Y. Lin, J. G. Fleming, and I. Ei-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

Lin, T. H.

Liu, J. H.

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals," Appl. Phys. Lett. 82, 16-18 (2003).
[CrossRef]

Matsui, T.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photo polymerized cholesteric liquid crystal," Appl. Phys. Lett. 81,3741-3743 (2002).
[CrossRef]

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Moreira, M. F.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004).
[CrossRef]

Munoz, A.

W. Y. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase," Nat. Mater. 1, 111-113 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Nagata, T.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Nishimura, S.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Ohta, T.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Opp, V.

P. V. Hibaev, V. Opp, A. Enack, and E. Anelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30, 1391-1400 (2003).
[CrossRef]

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals," Appl. Phys. Lett. 82, 16-18 (2003).
[CrossRef]

Ozaki, M.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photo polymerized cholesteric liquid crystal," Appl. Phys. Lett. 81,3741-3743 (2002).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshina, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Ozaki, R.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photo polymerized cholesteric liquid crystal," Appl. Phys. Lett. 81,3741-3743 (2002).
[CrossRef]

Palffy-Muhoray, P.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004).
[CrossRef]

W. Y. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase," Nat. Mater. 1, 111-113 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Rapaport, A.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87, 231107 (2005).
[CrossRef]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Shin, K. C.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Song, M. H.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Taheri, B.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004).
[CrossRef]

W. Y. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase," Nat. Mater. 1, 111-113 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Takanishi, Y.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Takezoe, H.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Toyooka, T.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Tsunoda, Y.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Vithana, H. K. M.

Watanabe, J.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Wu, F. C.

Wu, S. T.

Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, "Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility," Opt. Express 14, 1236-1241 (2006).
[CrossRef] [PubMed]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Y. Huang, Y. Zhou, and S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88, 011107 (2006).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87, 231107 (2005).
[CrossRef]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals," Appl. Phys. Lett. 82, 16-18 (2003).
[CrossRef]

Yoshina, K.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshina, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Yoshino, K.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photo polymerized cholesteric liquid crystal," Appl. Phys. Lett. 81,3741-3743 (2002).
[CrossRef]

Zhang, Z. Q.

V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, "Lasing in chiral photonic structures," Prog. Quantum Electron. 27, 369-416 (2003).
[CrossRef]

Zhou, Y.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Y. Huang, Y. Zhou, and S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88, 011107 (2006).
[CrossRef]

Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, "Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility," Opt. Express 14, 1236-1241 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87, 231107 (2005).
[CrossRef]

Adv. Mater. (2)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshina, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Appl. Phys. Lett. (7)

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photo polymerized cholesteric liquid crystal," Appl. Phys. Lett. 81,3741-3743 (2002).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals," Appl. Phys. Lett. 82, 16-18 (2003).
[CrossRef]

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004).
[CrossRef]

Y. Huang, Y. Zhou, and S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88, 011107 (2006).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, L. Oriol, "Phototunable lasing in dye-doped cholesteric liquid crystals," Appl. Phys. Lett. 83, 5353-5355 (2003).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87, 231107 (2005).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. Ei-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K. C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, "Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 6142-6144 (2004).
[CrossRef]

Liq. Cryst. (1)

P. V. Hibaev, V. Opp, A. Enack, and E. Anelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30, 1391-1400 (2003).
[CrossRef]

Nat. Mater. (1)

W. Y. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase," Nat. Mater. 1, 111-113 (2002).
[CrossRef]

Opt. Commun. (1)

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Prog. Quantum Electron. (1)

V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, "Lasing in chiral photonic structures," Prog. Quantum Electron. 27, 369-416 (2003).
[CrossRef]

Other (1)

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays. (Wiley, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Microscopy images of cholesteric liquid crystal morphologies: (a) 8 μm DCM-doped CLC cell, (b) 10 μm DCM-doped CLC cell, (c) 15 μm DCM-doped CLC cell, and (d) 5 μm CLC cell. The white bar in each figure shows a scale of 100 μm.

Fig. 2.
Fig. 2.

Experimental setup; LCP: Left-handed circularly polarized light, and QW: Quarter wave plate.

Fig. 3.
Fig. 3.

Wavelength dependent normalized transmittance of three active CLC cells (8, 10, and 15 μm) and a passive CLC cell (5 μm). The red line is the lasing spectrum of the 8 μm active CLC cell at 30 μJ/pulse pump.

Fig. 4.
Fig. 4.

Pumping energy dependent laser output power of the 8-μm active CLC cell with a 5 μm passive CLC reflector. Threshold ~1.8 μJ/pulse at λ=532 nm. The average enhancement ratio is ~10.7X.

Fig. 5.
Fig. 5.

Pumping energy dependent laser output power of the 10-μm active CLC cell with a 5 μm passive CLC reflector. Threshold ~1.0 μJ/pulse at λ=532 nm. The average enhancement ratio is ~6. 8X.

Fig. 6.
Fig. 6.

Pumping energy dependent laser output power of the 15-μm active CLC cell with a 5 μm passive CLC reflector. Threshold ~0.5 μJ/pulse at λ=532 nm. The average enhancement ratio is ~3.5X.

Fig. 7.
Fig. 7.

Far field laser patterns of the 8-μm CLC laser at 3.2 cm (top), 4.3 cm (middle), 5.3 cm (bottom) away from the lasing cell. Pumping laser energy is 38 μJ/pulse and λ =532 nm. Left column: single active layer CLC lasers; Right column: active-passive layered CLC lasers.

Fig. 8.
Fig. 8.

Far field laser patterns of the 10-μm CLC laser at 3 cm (top), 4 cm (middle), and 5 cm (bottom) away from the lasing cell. Pumping laser energy is 38 μJ/pulse and λ =532 nm. Left column: single active layer CLC lasers; Right column: active-passive layered CLC lasers.

Fig. 9.
Fig. 9.

Far field laser beam spot of 15-μm CLC laser at 2.5 cm (top), 3.3 cm (middle), 5.0 cm (bottom) away from lasing cell. Pumping laser energy is 38 μJ/pulse and λ =532 nm. Left column: single active layer CLC lasers; Right column: active-passive layered CLC lasers.

Fig. 10.
Fig. 10.

Comparison of the far field 2D beam profiles from the 10-μm single layer CLC laser (left) and the 10-μm double-layered CLC laser (right). The images are extracted from Fig. 8 at distance 3 cm away. Pumping energy is 38 μJ/pulse, λ=532 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ o = < n > p ,
Δ λ = Δ n p ,
p = 1 HTP c %

Metrics