Abstract

We have studied the concentration dependent fluorescence decay kinetics of ceramic Nd:YAG, to resolve inconsistencies in the previous literature. Our data indicate that earlier reports of single exponential lifetimes even at Nd concentrations of a few percent were due to the effects of long-pulse excitation. Under short-pulse excitation the fluorescence decay is nonexponential for concentrations greater than about 1% atomic. Energy migration to sinks consisting of cross-relaxing Nd ions dominates at long times, whereas single-step energy transfer to randomly distributed quenching sites dominates at earlier times. The concentration dependence of this single-step transfer indicates direct cross-relaxation between individual ions at concentrations below 4% atomic, but resonant transfer to quenching sites consisting of Nd pairs at higher concentrations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials," J. Alloys Compd. 341, 220-225 (2002).
    [CrossRef]
  2. V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura and A. Ikesue, "High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics," J. Opt. Soc. Am. B 19, 360-368 (2002).
    [CrossRef]
  3. R. C. Powell, Physics of Solid-State Laser Materials, (AIP Press, New York, 1998), p. 334.
  4. V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji and A. Ikesue, "Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics," Opt. Commun. 195, 225-232 (2001).
    [CrossRef]
  5. G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
    [CrossRef]
  6. V. Lupei and A. Lupei, "Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities," Phys. Rev. B 61, 8087-8098 (2000).
    [CrossRef]
  7. L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo and D. Sumida, "Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions," Opt. Mater. 10, 319-326 (1998).
    [CrossRef]
  8. M. J. Weber, "Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
    [CrossRef]
  9. K. B. Eisenthal and S. Siegel, "Influence of resonance transfer on luminescence decay," J. Chem. Phys. 41, 652-655 (1964). See also references 1-3 therein.
    [CrossRef]
  10. M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
    [CrossRef]
  11. A. Lupei, V. Lupei, S. Georgescu, C. Ionescu and W. M. Yen, "Mechanisms of energy transfer between Nd3+ Ions in YAG," J. Lumin. 39, 35-43 (1987).
    [CrossRef]
  12. R. C. Powell, op cit, p. 199.
  13. A. Ikesue, T. Kinoshita, K. Kamata and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
    [CrossRef]
  14. H. G. Danielmeyer, M. Blatte and P. Balmer, "Fluorescence quenching in Nd:YAG," Appl. Phys. 1, 269-274 (1973).
    [CrossRef]
  15. R. C. Powell, op cit, p. 325.
  16. M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo and G. J. Quarles, "Laser Studies of 8% Nd:YAG Ceramic Gain Material," in OSA Trends in Optics and Photonics Series (TOPS) Vol. 98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC 2005), pp. 47-51.

2004 (1)

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

2002 (2)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials," J. Alloys Compd. 341, 220-225 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura and A. Ikesue, "High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics," J. Opt. Soc. Am. B 19, 360-368 (2002).
[CrossRef]

2001 (1)

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji and A. Ikesue, "Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics," Opt. Commun. 195, 225-232 (2001).
[CrossRef]

2000 (1)

V. Lupei and A. Lupei, "Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities," Phys. Rev. B 61, 8087-8098 (2000).
[CrossRef]

1998 (1)

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo and D. Sumida, "Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions," Opt. Mater. 10, 319-326 (1998).
[CrossRef]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

1987 (1)

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu and W. M. Yen, "Mechanisms of energy transfer between Nd3+ Ions in YAG," J. Lumin. 39, 35-43 (1987).
[CrossRef]

1973 (1)

H. G. Danielmeyer, M. Blatte and P. Balmer, "Fluorescence quenching in Nd:YAG," Appl. Phys. 1, 269-274 (1973).
[CrossRef]

1971 (1)

M. J. Weber, "Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

1967 (1)

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials," J. Alloys Compd. 341, 220-225 (2002).
[CrossRef]

Balmer, P.

H. G. Danielmeyer, M. Blatte and P. Balmer, "Fluorescence quenching in Nd:YAG," Appl. Phys. 1, 269-274 (1973).
[CrossRef]

Barbosa-Garcia, O.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo and D. Sumida, "Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions," Opt. Mater. 10, 319-326 (1998).
[CrossRef]

Blatte, M.

H. G. Danielmeyer, M. Blatte and P. Balmer, "Fluorescence quenching in Nd:YAG," Appl. Phys. 1, 269-274 (1973).
[CrossRef]

Danielmeyer, H. G.

H. G. Danielmeyer, M. Blatte and P. Balmer, "Fluorescence quenching in Nd:YAG," Appl. Phys. 1, 269-274 (1973).
[CrossRef]

Diaconescu, B.

Diaz-Torres, L. A.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo and D. Sumida, "Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions," Opt. Mater. 10, 319-326 (1998).
[CrossRef]

Georgescu, S.

Hernandez, J. M.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo and D. Sumida, "Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions," Opt. Mater. 10, 319-326 (1998).
[CrossRef]

Ikesue, A.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura and A. Ikesue, "High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics," J. Opt. Soc. Am. B 19, 360-368 (2002).
[CrossRef]

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji and A. Ikesue, "Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics," Opt. Commun. 195, 225-232 (2001).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

Ionescu, C.

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu and W. M. Yen, "Mechanisms of energy transfer between Nd3+ Ions in YAG," J. Lumin. 39, 35-43 (1987).
[CrossRef]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

Kaminskii, A. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials," J. Alloys Compd. 341, 220-225 (2002).
[CrossRef]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

Kumar, G. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

Kurimura, S.

Lu, J.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials," J. Alloys Compd. 341, 220-225 (2002).
[CrossRef]

Lupei, A.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura and A. Ikesue, "High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics," J. Opt. Soc. Am. B 19, 360-368 (2002).
[CrossRef]

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji and A. Ikesue, "Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics," Opt. Commun. 195, 225-232 (2001).
[CrossRef]

V. Lupei and A. Lupei, "Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities," Phys. Rev. B 61, 8087-8098 (2000).
[CrossRef]

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu and W. M. Yen, "Mechanisms of energy transfer between Nd3+ Ions in YAG," J. Lumin. 39, 35-43 (1987).
[CrossRef]

Lupei, V.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura and A. Ikesue, "High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics," J. Opt. Soc. Am. B 19, 360-368 (2002).
[CrossRef]

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji and A. Ikesue, "Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics," Opt. Commun. 195, 225-232 (2001).
[CrossRef]

V. Lupei and A. Lupei, "Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities," Phys. Rev. B 61, 8087-8098 (2000).
[CrossRef]

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu and W. M. Yen, "Mechanisms of energy transfer between Nd3+ Ions in YAG," J. Lumin. 39, 35-43 (1987).
[CrossRef]

Pavel, N.

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji and A. Ikesue, "Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics," Opt. Commun. 195, 225-232 (2001).
[CrossRef]

Pinto-Robledo, V.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo and D. Sumida, "Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions," Opt. Mater. 10, 319-326 (1998).
[CrossRef]

Sato, Y.

Shoji, I.

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji and A. Ikesue, "Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics," Opt. Commun. 195, 225-232 (2001).
[CrossRef]

Sumida, D.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo and D. Sumida, "Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions," Opt. Mater. 10, 319-326 (1998).
[CrossRef]

Taira, T.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura and A. Ikesue, "High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics," J. Opt. Soc. Am. B 19, 360-368 (2002).
[CrossRef]

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji and A. Ikesue, "Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics," Opt. Commun. 195, 225-232 (2001).
[CrossRef]

Tanimoto, O.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Ueda, K.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials," J. Alloys Compd. 341, 220-225 (2002).
[CrossRef]

Unnikrishnan, N. V.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

Weber, M. J.

M. J. Weber, "Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

Yagi, H.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials," J. Alloys Compd. 341, 220-225 (2002).
[CrossRef]

Yanagitani, T.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials," J. Alloys Compd. 341, 220-225 (2002).
[CrossRef]

Yen, W. M.

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu and W. M. Yen, "Mechanisms of energy transfer between Nd3+ Ions in YAG," J. Lumin. 39, 35-43 (1987).
[CrossRef]

Yokota, M.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

Appl. Phys. (1)

H. G. Danielmeyer, M. Blatte and P. Balmer, "Fluorescence quenching in Nd:YAG," Appl. Phys. 1, 269-274 (1973).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani and N. V. Unnikrishnan, "Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics," IEEE J. Quantum Electron. 40, 747-758 (2004).
[CrossRef]

J. Alloys Compd. (1)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama and A. A. Kaminskii, "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials," J. Alloys Compd. 341, 220-225 (2002).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Ikesue, T. Kinoshita, K. Kamata and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

J. Lumin. (1)

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu and W. M. Yen, "Mechanisms of energy transfer between Nd3+ Ions in YAG," J. Lumin. 39, 35-43 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Opt. Commun. (1)

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji and A. Ikesue, "Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics," Opt. Commun. 195, 225-232 (2001).
[CrossRef]

Opt. Mater. (1)

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo and D. Sumida, "Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions," Opt. Mater. 10, 319-326 (1998).
[CrossRef]

Phys. Rev. B (2)

M. J. Weber, "Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

V. Lupei and A. Lupei, "Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities," Phys. Rev. B 61, 8087-8098 (2000).
[CrossRef]

Other (5)

R. C. Powell, Physics of Solid-State Laser Materials, (AIP Press, New York, 1998), p. 334.

K. B. Eisenthal and S. Siegel, "Influence of resonance transfer on luminescence decay," J. Chem. Phys. 41, 652-655 (1964). See also references 1-3 therein.
[CrossRef]

R. C. Powell, op cit, p. 199.

R. C. Powell, op cit, p. 325.

M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo and G. J. Quarles, "Laser Studies of 8% Nd:YAG Ceramic Gain Material," in OSA Trends in Optics and Photonics Series (TOPS) Vol. 98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC 2005), pp. 47-51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Quenching function P(t), as defined by Eq. (1) in the text with τ0 = 262 μs, for the 532-nm excited fluorescence of bulk samples of ceramic Nd:YAG for four concentrations. The inset to B shows early-time details of the decay and fits for 2% Nd. In each case the discrete symbols represent the experimental data. Fits to Eq. (2) are shown as solid and dashed curves. For 2% Nd the fit shown as a solid curve has its amplitude scaled to fit the portion of the decay after the initial approximately exponential decay, whereas the fit shown as a dashed curve is an attempt to fit the entire decay at once.

Fig. 2.
Fig. 2.

Quenching function P(t), as defined by Eq. (1) with τ0 = 262 μs, for the short-pulse, 808-nm excited fluorescence of bulk samples of ceramic Nd:YAG for four concentrations, with the insets showing the early-time behavior. In each case the discrete symbols represent the experimental data. Fits to Eq. (2) are shown as solid and dashed curves. For 2, 4 and 9% Nd the fit shown as a solid curve has its amplitude scaled to fit the portion of the decay after the initial approximately exponential decay, whereas the fit shown as a dashed curve is an attempt to fit the entire decay at once.

Fig. 3.
Fig. 3.

Concentration dependence of the energy transfer parameters for short-pulse-excited fluorescence of ceramic Nd:YAG. Filled circles are the fitting parameter values from Table I; solid lines are linear regression fits. A and B are the results for 532-nm excitation of bulk samples, C and D are for 532-nm excitation of powder samples, and E and F are for 808-nm excitation of bulk samples.

Fig. 4.
Fig. 4.

Effective ground state absorption cross section of ceramic Nd:YAG near 532 nm and 808 nm for different concentrations. Solid curves: 1% Nd; dotted curves: 4% Nd; dashed curves: 9% Nd.

Tables (2)

Tables Icon

Table 1. Energy transfer parameters versus concentration from fitting Eq. (2) to the fluorescence decay data. Ass is an abbreviation for (4/3)π3/2na(α)1/2. W, na and α are defined in the text, and 1/τtail = 1/τ0 + W.

Tables Icon

Table 2. Comparison of fluorescence decay kinetics under 808-nm excitation by long pulses (several μs) and by short pulses (several ns).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n excited ( t ) = n 0 × exp ( t τ 0 P ( t ) ) ,
P ( t ) = ( 4 3 ) π 3 2 n a ( αt ) 1 2 + Wt ,
α d a EDD ( 27 c 2 64 π 6 n 3 ν da 4 τ d 0 ) i β i σ ai ( pk ) ( 1 + ( ν di ν ai ) 2 Δ ν i 2 )
α cross - relaxation Forster - Dexter 6.4 × 10 40 cm 6 s 1 .
α resonant transfer Forster - Dexter 3.3 × 10 38 cm 6 s 1 .

Metrics