Abstract

We have studied the concentration dependent fluorescence decay kinetics of ceramic Nd:YAG, to resolve inconsistencies in the previous literature. Our data indicate that earlier reports of single exponential lifetimes even at Nd concentrations of a few percent were due to the effects of long-pulse excitation. Under short-pulse excitation the fluorescence decay is nonexponential for concentrations greater than about 1% atomic. Energy migration to sinks consisting of cross-relaxing Nd ions dominates at long times, whereas single-step energy transfer to randomly distributed quenching sites dominates at earlier times. The concentration dependence of this single-step transfer indicates direct cross-relaxation between individual ions at concentrations below 4% atomic, but resonant transfer to quenching sites consisting of Nd pairs at higher concentrations.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Sensitizing of Nd3+ luminescence by Cr3+ in gallium garnets

V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, and I. A. Shcherbakov
J. Opt. Soc. Am. B 3(1) 81-94 (1986)

Nd3+ to Er3+ and Nd3+ to Ho3+ energy transfer in laser crystals

M. Stalder and M. Bass
J. Opt. Soc. Am. B 8(1) 177-183 (1991)

Theory of donor fluorescence governed by discrete energy transfers between rare-earth ions in glasses

Kazuhiko Tonooka, Koji Yamada, Yousuke Kato, Tomokazu Hayakawa, and Norihiko Kamata
J. Opt. Soc. Am. B 14(4) 713-721 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
    [Crossref]
  2. V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
    [Crossref]
  3. R. C. Powell, Physics of Solid-State Laser Materials, (AIP Press, New York, 1998), p. 334.
  4. V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001).
    [Crossref]
  5. G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
    [Crossref]
  6. V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
    [Crossref]
  7. L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
    [Crossref]
  8. M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
    [Crossref]
  9. K. B. Eisenthal and S. Siegel, “Influence of resonance transfer on luminescence decay,” J. Chem. Phys. 41, 652–655 (1964). See also references 1-3 therein.
    [Crossref]
  10. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
    [Crossref]
  11. A. Lupei, V. Lupei, S. Georgescu, C. Ionescu, and W. M. Yen, “Mechanisms of energy transfer between Nd3+ Ions in YAG,” J. Lumin. 39, 35–43 (1987).
    [Crossref]
  12. R. C. Powell, op cit, p. 199.
  13. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
    [Crossref]
  14. H. G. Danielmeyer, M. Blatte, and P. Balmer, “Fluorescence quenching in Nd:YAG,” Appl. Phys. 1, 269–274 (1973).
    [Crossref]
  15. R. C. Powell, op cit, p. 325.
  16. M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo, and G. J. Quarles, “Laser Studies of 8% Nd:YAG Ceramic Gain Material,” in OSA Trends in Optics and Photonics Series (TOPS) Vol.  98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC2005), pp. 47–51.

2005 (1)

M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo, and G. J. Quarles, “Laser Studies of 8% Nd:YAG Ceramic Gain Material,” in OSA Trends in Optics and Photonics Series (TOPS) Vol.  98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC2005), pp. 47–51.

2004 (1)

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
[Crossref]

2002 (2)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[Crossref]

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[Crossref]

2001 (1)

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001).
[Crossref]

2000 (1)

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[Crossref]

1998 (1)

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[Crossref]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

1987 (1)

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu, and W. M. Yen, “Mechanisms of energy transfer between Nd3+ Ions in YAG,” J. Lumin. 39, 35–43 (1987).
[Crossref]

1973 (1)

H. G. Danielmeyer, M. Blatte, and P. Balmer, “Fluorescence quenching in Nd:YAG,” Appl. Phys. 1, 269–274 (1973).
[Crossref]

1971 (1)

M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[Crossref]

1967 (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[Crossref]

1964 (1)

K. B. Eisenthal and S. Siegel, “Influence of resonance transfer on luminescence decay,” J. Chem. Phys. 41, 652–655 (1964). See also references 1-3 therein.
[Crossref]

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[Crossref]

Balmer, P.

H. G. Danielmeyer, M. Blatte, and P. Balmer, “Fluorescence quenching in Nd:YAG,” Appl. Phys. 1, 269–274 (1973).
[Crossref]

Barbosa-Garcia, O.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[Crossref]

Blatte, M.

H. G. Danielmeyer, M. Blatte, and P. Balmer, “Fluorescence quenching in Nd:YAG,” Appl. Phys. 1, 269–274 (1973).
[Crossref]

Castillo, V. K.

M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo, and G. J. Quarles, “Laser Studies of 8% Nd:YAG Ceramic Gain Material,” in OSA Trends in Optics and Photonics Series (TOPS) Vol.  98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC2005), pp. 47–51.

Danielmeyer, H. G.

H. G. Danielmeyer, M. Blatte, and P. Balmer, “Fluorescence quenching in Nd:YAG,” Appl. Phys. 1, 269–274 (1973).
[Crossref]

Diaconescu, B.

Diaz-Torres, L. A.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[Crossref]

Dubinskii, M.

M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo, and G. J. Quarles, “Laser Studies of 8% Nd:YAG Ceramic Gain Material,” in OSA Trends in Optics and Photonics Series (TOPS) Vol.  98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC2005), pp. 47–51.

Eisenthal, K. B.

K. B. Eisenthal and S. Siegel, “Influence of resonance transfer on luminescence decay,” J. Chem. Phys. 41, 652–655 (1964). See also references 1-3 therein.
[Crossref]

Georgescu, S.

Goff, J. R.

M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo, and G. J. Quarles, “Laser Studies of 8% Nd:YAG Ceramic Gain Material,” in OSA Trends in Optics and Photonics Series (TOPS) Vol.  98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC2005), pp. 47–51.

Hernandez, J. M.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[Crossref]

Ikesue, A.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[Crossref]

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

Ionescu, C.

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu, and W. M. Yen, “Mechanisms of energy transfer between Nd3+ Ions in YAG,” J. Lumin. 39, 35–43 (1987).
[Crossref]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

Kaminskii, A. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
[Crossref]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[Crossref]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

Kumar, G. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
[Crossref]

Kurimura, S.

Lu, J.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
[Crossref]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[Crossref]

Lupei, A.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[Crossref]

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001).
[Crossref]

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[Crossref]

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu, and W. M. Yen, “Mechanisms of energy transfer between Nd3+ Ions in YAG,” J. Lumin. 39, 35–43 (1987).
[Crossref]

Lupei, V.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[Crossref]

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001).
[Crossref]

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[Crossref]

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu, and W. M. Yen, “Mechanisms of energy transfer between Nd3+ Ions in YAG,” J. Lumin. 39, 35–43 (1987).
[Crossref]

Merkle, L. D.

M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo, and G. J. Quarles, “Laser Studies of 8% Nd:YAG Ceramic Gain Material,” in OSA Trends in Optics and Photonics Series (TOPS) Vol.  98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC2005), pp. 47–51.

Pavel, N.

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001).
[Crossref]

Pinto-Robledo, V.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[Crossref]

Powell, R. C.

R. C. Powell, Physics of Solid-State Laser Materials, (AIP Press, New York, 1998), p. 334.

R. C. Powell, op cit, p. 199.

R. C. Powell, op cit, p. 325.

Quarles, G. J.

M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo, and G. J. Quarles, “Laser Studies of 8% Nd:YAG Ceramic Gain Material,” in OSA Trends in Optics and Photonics Series (TOPS) Vol.  98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC2005), pp. 47–51.

Sato, Y.

Shoji, I.

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001).
[Crossref]

Siegel, S.

K. B. Eisenthal and S. Siegel, “Influence of resonance transfer on luminescence decay,” J. Chem. Phys. 41, 652–655 (1964). See also references 1-3 therein.
[Crossref]

Sumida, D.

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[Crossref]

Taira, T.

V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd:YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002).
[Crossref]

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001).
[Crossref]

Tanimoto, O.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[Crossref]

Ueda, K.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
[Crossref]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[Crossref]

Unnikrishnan, N. V.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
[Crossref]

Weber, M. J.

M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[Crossref]

Yagi, H.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
[Crossref]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[Crossref]

Yanagitani, T.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
[Crossref]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[Crossref]

Yen, W. M.

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu, and W. M. Yen, “Mechanisms of energy transfer between Nd3+ Ions in YAG,” J. Lumin. 39, 35–43 (1987).
[Crossref]

Yokota, M.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[Crossref]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

Appl. Phys. (1)

H. G. Danielmeyer, M. Blatte, and P. Balmer, “Fluorescence quenching in Nd:YAG,” Appl. Phys. 1, 269–274 (1973).
[Crossref]

IEEE J. Quantum Electron. (1)

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40, 747–758 (2004).
[Crossref]

J. Alloys Compd. (1)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

J. Chem. Phys. (1)

K. B. Eisenthal and S. Siegel, “Influence of resonance transfer on luminescence decay,” J. Chem. Phys. 41, 652–655 (1964). See also references 1-3 therein.
[Crossref]

J. Lumin. (1)

A. Lupei, V. Lupei, S. Georgescu, C. Ionescu, and W. M. Yen, “Mechanisms of energy transfer between Nd3+ Ions in YAG,” J. Lumin. 39, 35–43 (1987).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[Crossref]

Opt. Commun. (1)

V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001).
[Crossref]

Opt. Mater. (1)

L. A. Diaz-Torres, O. Barbosa-Garcia, J. M. Hernandez, V. Pinto-Robledo, and D. Sumida, “Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions,” Opt. Mater. 10, 319–326 (1998).
[Crossref]

Phys. Rev. B (2)

M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[Crossref]

V. Lupei and A. Lupei, “Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities,” Phys. Rev. B 61, 8087–8098 (2000).
[Crossref]

Other (4)

R. C. Powell, Physics of Solid-State Laser Materials, (AIP Press, New York, 1998), p. 334.

R. C. Powell, op cit, p. 199.

R. C. Powell, op cit, p. 325.

M. Dubinskii, L. D. Merkle, J. R. Goff, V. K. Castillo, and G. J. Quarles, “Laser Studies of 8% Nd:YAG Ceramic Gain Material,” in OSA Trends in Optics and Photonics Series (TOPS) Vol.  98, Advanced Solid-State Photonics, Craig Denman, ed. (Optical Society of America, Washington, DC2005), pp. 47–51.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Quenching function P(t), as defined by Eq. (1) in the text with τ0 = 262 μs, for the 532-nm excited fluorescence of bulk samples of ceramic Nd:YAG for four concentrations. The inset to B shows early-time details of the decay and fits for 2% Nd. In each case the discrete symbols represent the experimental data. Fits to Eq. (2) are shown as solid and dashed curves. For 2% Nd the fit shown as a solid curve has its amplitude scaled to fit the portion of the decay after the initial approximately exponential decay, whereas the fit shown as a dashed curve is an attempt to fit the entire decay at once.

Fig. 2.
Fig. 2.

Quenching function P(t), as defined by Eq. (1) with τ0 = 262 μs, for the short-pulse, 808-nm excited fluorescence of bulk samples of ceramic Nd:YAG for four concentrations, with the insets showing the early-time behavior. In each case the discrete symbols represent the experimental data. Fits to Eq. (2) are shown as solid and dashed curves. For 2, 4 and 9% Nd the fit shown as a solid curve has its amplitude scaled to fit the portion of the decay after the initial approximately exponential decay, whereas the fit shown as a dashed curve is an attempt to fit the entire decay at once.

Fig. 3.
Fig. 3.

Concentration dependence of the energy transfer parameters for short-pulse-excited fluorescence of ceramic Nd:YAG. Filled circles are the fitting parameter values from Table I; solid lines are linear regression fits. A and B are the results for 532-nm excitation of bulk samples, C and D are for 532-nm excitation of powder samples, and E and F are for 808-nm excitation of bulk samples.

Fig. 4.
Fig. 4.

Effective ground state absorption cross section of ceramic Nd:YAG near 532 nm and 808 nm for different concentrations. Solid curves: 1% Nd; dotted curves: 4% Nd; dashed curves: 9% Nd.

Tables (2)

Tables Icon

Table 1. Energy transfer parameters versus concentration from fitting Eq. (2) to the fluorescence decay data. Ass is an abbreviation for (4/3)π3/2na(α)1/2. W, na and α are defined in the text, and 1/τtail = 1/τ0 + W.

Tables Icon

Table 2. Comparison of fluorescence decay kinetics under 808-nm excitation by long pulses (several μs) and by short pulses (several ns).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n excited ( t ) = n 0 × exp ( t τ 0 P ( t ) ) ,
P ( t ) = ( 4 3 ) π 3 2 n a ( αt ) 1 2 + Wt ,
α d a EDD ( 27 c 2 64 π 6 n 3 ν da 4 τ d 0 ) i β i σ ai ( pk ) ( 1 + ( ν di ν ai ) 2 Δ ν i 2 )
α cross - relaxation Forster - Dexter 6.4 × 10 40 cm 6 s 1 .
α resonant transfer Forster - Dexter 3.3 × 10 38 cm 6 s 1 .

Metrics