Abstract

We determine group index and group velocity dispersion (GVD) of SOI single-mode strip waveguides (photonic wires) with 525×226nm cross-section over the entire telecommunication bandwidth by employing an integrated Mach-Zehnder interferometer. The measured GVD yields 4400 ps/(nm∙km) at 1550 nm and exceeds that of standard single-mode fibers by almost three orders of magnitude. In the photonic wires the GVD is mainly determined by strong light confinement rather than by material dispersion. Our results indicate that despite this high GVD, dispersion-induced signal impairment is negligible in photonic circuits for data rates up to 100-Gb/s and total waveguide lengths as long as about 1 meter. The measured group index and GVD are used as benchmarks to compare model calculations originating from four different theoretical methods.

© 2006 Optical Society of America

Full Article  |  PDF Article

Corrections

Eric Dulkeith, Fengnian Xia, Laurent Schares, William M. J. Green, Lidija Sekaric, and Yurii A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires: errata," Opt. Express 14, 6372-6372 (2006)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-14-13-6372

References

  • View by:
  • |
  • |
  • |

  1. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
    [Crossref]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  3. V. R. Almeida, Q. F. Xu, and M. Lipson, “Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect,” Opt. Lett. 30, 2403–2405 (2005).
    [Crossref] [PubMed]
  4. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. Part 2  43, L673–L675 (2004).
    [Crossref]
  5. L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
    [Crossref]
  6. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
    [Crossref]
  7. C. Manolatou, S. G. Johnson, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
    [Crossref]
  8. A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. E85C, 1033–1038 (2002).
  9. K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).
  10. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
    [Crossref] [PubMed]
  11. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
    [Crossref] [PubMed]
  12. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
    [Crossref] [PubMed]
  13. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref] [PubMed]
  14. F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of mu-bends and mu-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. Part 1  44, 5322–5323 (2005).
    [Crossref]
  15. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
    [Crossref]
  16. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]
  17. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model (vol 77, pg 1617, 2000),” Appl. Phys. Lett. 77, 2258–2258 (2000).
    [Crossref]
  18. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
    [Crossref] [PubMed]
  19. Y. A. Vlasov, M. OBoyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref] [PubMed]
  20. F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express, accepted, manuscript number10415 (2006).
  21. B. Tatian, “Fitting Refractive-Index Data With The Sellmeier Dispersion Formula,” Appl. Opt. 23, 4477–4485 (1984).
    [Crossref] [PubMed]
  22. Y. Liang and C. P. Grover, “Modified white-light Mach-Zehnder interferometer for direct group-delay measurements,” Appl. Opt. 37, 4105–4111 (1998).
    [Crossref]
  23. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1982).
  24. X. G. Chen, N. C. Panoiu, and R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE Journal Of Quantum Electronics 42, 160–170 (2006).
    [Crossref]
  25. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
    [Crossref]
  26. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).
    [Crossref]
  27. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mu m pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
    [Crossref]
  28. G. Johnson Steven, “MIT Photonic Bands (MPB), Manual 1.42, http://ab-initio.mit.edu/mpb/,” (2004).
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (2005).
  30. Rsoft Design Group, “FullWAVE 4.0 Manual, http://www.rsoftdesign.com” (2005).
  31. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: Pros and cons,” in Integrated Optics: Devices, Materials and Technologies VII, Y. S. Sidorin and A. Tervonen; Eds. Proc. SPIE 4987, 69–82 (2003).
    [Crossref]
  32. Photon Design, “FimmWave Manual 4.3.4, http://www.photond.com” (2005).
  33. M. D. Feit and J. A. Fleck, “Computation of mode properties in optical fiber wave-guides by a propagating beam method,” Appl. Opt. 19, 1154–1164 (1980).
    [Crossref] [PubMed]
  34. Rsoft Design Group, “BeamPROP 5.1.1 Manual, http://www.rsoftdesign.com,” (2005).

2006 (2)

F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express, accepted, manuscript number10415 (2006).

X. G. Chen, N. C. Panoiu, and R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE Journal Of Quantum Electronics 42, 160–170 (2006).
[Crossref]

2005 (6)

Photon Design, “FimmWave Manual 4.3.4, http://www.photond.com” (2005).

Y. A. Vlasov, M. OBoyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of mu-bends and mu-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. Part 1  44, 5322–5323 (2005).
[Crossref]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

V. R. Almeida, Q. F. Xu, and M. Lipson, “Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect,” Opt. Lett. 30, 2403–2405 (2005).
[Crossref] [PubMed]

2004 (6)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. Part 2  43, L673–L675 (2004).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mu m pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

2003 (3)

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: Pros and cons,” in Integrated Optics: Devices, Materials and Technologies VII, Y. S. Sidorin and A. Tervonen; Eds. Proc. SPIE 4987, 69–82 (2003).
[Crossref]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
[Crossref] [PubMed]

2002 (3)

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. E85C, 1033–1038 (2002).

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

2001 (1)

2000 (2)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model (vol 77, pg 1617, 2000),” Appl. Phys. Lett. 77, 2258–2258 (2000).
[Crossref]

L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
[Crossref]

1999 (1)

1998 (2)

Y. Liang and C. P. Grover, “Modified white-light Mach-Zehnder interferometer for direct group-delay measurements,” Appl. Opt. 37, 4105–4111 (1998).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

1984 (1)

1980 (1)

Agarwal, A.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model (vol 77, pg 1617, 2000),” Appl. Phys. Lett. 77, 2258–2258 (2000).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).
[Crossref]

Ahmad, R. U.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[Crossref]

Almeida, V. R.

V. R. Almeida, Q. F. Xu, and M. Lipson, “Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect,” Opt. Lett. 30, 2403–2405 (2005).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Baba, T.

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of mu-bends and mu-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. Part 1  44, 5322–5323 (2005).
[Crossref]

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. Part 2  43, L673–L675 (2004).
[Crossref]

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. E85C, 1033–1038 (2002).

Baets, R.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Boyraz, O.

Camarda, G. S.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[Crossref]

Chen, X. G.

X. G. Chen, N. C. Panoiu, and R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE Journal Of Quantum Electronics 42, 160–170 (2006).
[Crossref]

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Dadap, J. I.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Espinola, R. L.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[Crossref] [PubMed]

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[Crossref]

Fan, S. H.

Feit, M. D.

Felici, T. P.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: Pros and cons,” in Integrated Optics: Devices, Materials and Technologies VII, Y. S. Sidorin and A. Tervonen; Eds. Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Fleck, J. A.

Foresi, J.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model (vol 77, pg 1617, 2000),” Appl. Phys. Lett. 77, 2258–2258 (2000).
[Crossref]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Fukazawa, T.

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of mu-bends and mu-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. Part 1  44, 5322–5323 (2005).
[Crossref]

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. Part 2  43, L673–L675 (2004).
[Crossref]

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. E85C, 1033–1038 (2002).

Fukuda, H.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Gallagher, D. F. G.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: Pros and cons,” in Integrated Optics: Devices, Materials and Technologies VII, Y. S. Sidorin and A. Tervonen; Eds. Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Grover, C. P.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (2005).

Hamann, H. F.

Y. A. Vlasov, M. OBoyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Haus, H. A.

C. Manolatou, S. G. Johnson, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Itabashi, S.

Itabashi, S. I.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Jalali, B.

Joannopoulos, J. D.

Johnson, S. G.

Johnson Steven, G.

G. Johnson Steven, “MIT Photonic Bands (MPB), Manual 1.42, http://ab-initio.mit.edu/mpb/,” (2004).

Kimerling, L. C.

L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
[Crossref]

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model (vol 77, pg 1617, 2000),” Appl. Phys. Lett. 77, 2258–2258 (2000).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Koonath, P.

Lee, K. K.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model (vol 77, pg 1617, 2000),” Appl. Phys. Lett. 77, 2258–2258 (2000).
[Crossref]

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Liang, Y.

Lim, D. R.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model (vol 77, pg 1617, 2000),” Appl. Phys. Lett. 77, 2258–2258 (2000).
[Crossref]

Lipson, M.

V. R. Almeida, Q. F. Xu, and M. Lipson, “Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect,” Opt. Lett. 30, 2403–2405 (2005).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Luan, H. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model (vol 77, pg 1617, 2000),” Appl. Phys. Lett. 77, 2258–2258 (2000).
[Crossref]

Manolatou, C.

Marcuse, D.

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1982).

McNab, S. J.

Moll, N.

Morita, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

OBoyle, M.

Y. A. Vlasov, M. OBoyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Ohno, F.

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of mu-bends and mu-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. Part 1  44, 5322–5323 (2005).
[Crossref]

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. Part 2  43, L673–L675 (2004).
[Crossref]

Osgood, R. M.

X. G. Chen, N. C. Panoiu, and R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE Journal Of Quantum Electronics 42, 160–170 (2006).
[Crossref]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[Crossref] [PubMed]

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Panoiu, N. C.

X. G. Chen, N. C. Panoiu, and R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE Journal Of Quantum Electronics 42, 160–170 (2006).
[Crossref]

Pizzuto, F.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[Crossref]

Raghunathan, V.

Rao, H.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[Crossref]

Rieger, G. W.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mu m pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Sakai, A.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. E85C, 1033–1038 (2002).

Sekaric, L.

F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express, accepted, manuscript number10415 (2006).

Shoji, T.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (2005).

Taillaert, D.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Takahashi, J.

Takahashi, J. I.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Takahashi, M.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Tamechika, E.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Tatian, B.

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Tsuchizawa, T.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Villeneuve, P. R.

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mu m pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

Vlasov, Y. A.

Watanabe, T.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Xia, F.

F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express, accepted, manuscript number10415 (2006).

Xu, Q. F.

Yamada, K.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

Young, J. F.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mu m pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mu m pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model (vol 77, pg 1617, 2000),” Appl. Phys. Lett. 77, 2258–2258 (2000).
[Crossref]

Appl. Surf. Sci. (1)

L. C. Kimerling, “Silicon microphotonics,” Appl. Surf. Sci. 159, 8–13 (2000).
[Crossref]

IEEE Journal Of Quantum Electronics (1)

X. G. Chen, N. C. Panoiu, and R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE Journal Of Quantum Electronics 42, 160–170 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (3)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002).
[Crossref]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

IEICE Trans. Electron. (2)

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. E85C, 1033–1038 (2002).

K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, “Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron. E87C, 351–358 (2004).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (2)

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. Part 2  43, L673–L675 (2004).
[Crossref]

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of mu-bends and mu-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. Part 1  44, 5322–5323 (2005).
[Crossref]

Nature (2)

Y. A. Vlasov, M. OBoyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Express, accepted, manuscript number (1)

F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express, accepted, manuscript number10415 (2006).

Opt. Lett. (1)

Proc. SPIE (1)

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: Pros and cons,” in Integrated Optics: Devices, Materials and Technologies VII, Y. S. Sidorin and A. Tervonen; Eds. Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Other (7)

Photon Design, “FimmWave Manual 4.3.4, http://www.photond.com” (2005).

Rsoft Design Group, “BeamPROP 5.1.1 Manual, http://www.rsoftdesign.com,” (2005).

G. Johnson Steven, “MIT Photonic Bands (MPB), Manual 1.42, http://ab-initio.mit.edu/mpb/,” (2004).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (2005).

Rsoft Design Group, “FullWAVE 4.0 Manual, http://www.rsoftdesign.com” (2005).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).
[Crossref]

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Phase-space for the two lowest order TE and TM modes as a function of the waveguide width for three Si slab thicknesses h: (a) 300nm, (b) 226nm and (c) 150nm. The cutoff wavelengths (black lines) are determined by band structure calculations. The grey areas show single-mode support for both TE and TM polarization, grey hatched areas showing truly TE support. Red circles and blue squares correspond to experimentally measured TE- and TM cutoffs, respectively.

Fig. 2.
Fig. 2.

(a) SEM image (above) of the investigated MZI. The straight sections differ in length by ΔL = 80 m. (b) TE transmission spectrum of the MZI. The phase shift between the two arms causes a cosine-like interference pattern.

Fig. 3.
Fig. 3.

Group indices derived from transmission spectra in TE and TM polarization and compared with model calculations based on plane-wave (dotted), beam-propagation (dashed), eigenmode expansion (solid), and FDTD (dash-dot). Red and blue dots correspond to measurements applying either laser diodes or a broadband LED light source, respectively. Inset: Spectral range of the TE group index used for further evaluation of the dispersion parameter.

Fig. 4.
Fig. 4.

Experimental dispersion parameter D of the silicon waveguide for TE polarization (red dots) compared with EME calculations for three different waveguide widths (solid lines). Inset: Phase change derived from a half-cycle of one interference fringe (1563-1566 nm). The phase progresses strictly linear from 0 to π.

Fig. 5.
Fig. 5.

(a) 25-Gb/s eye diagram with a PRBS 231-1 non-return-to-zero pattern. (b) Frequency response of the SOI waveguide, showing a variation of less than 1 dB up to 35 GHz.

Metrics