Abstract

We introduce a novel common-path interferometric measurement setup for optical quality testing. The setup is based on an optimized diffractive lens which produces two diffraction orders with equal efficiency and thus forms two interfering beams without any beam splitting or mirror alignments. The fabrication steps of the diffractive element are presented and the testing of the setup with injection molded millimeter scale lenses is briefly discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ferrari, E. Frins, D. Perciante, and R. Dubra, "Robust one-beam interferometer with phase-delay control," Opt. Lett. 24,1272-1274 (1999).
    [CrossRef]
  2. J. A. Ferrari and E. M. Frins, "One-beam interferometer by beam folding," Appl. Opt. 41, (2002) 5313-5316.
    [CrossRef] [PubMed]
  3. C. Koliopoulos, O. Kwon, R. Shagam, J. C. Wyant and C. R. Hayslett, "Infrared point-diffraction interferometer," Opt. Lett. 3,118-120 (1978).
    [CrossRef] [PubMed]
  4. J. E. Millerd, S. J. Martinek, N. J. Brock, J. B. Hayes and J. C. Wyant, "Instantaneous phase-shift, pointdiffraction interferometer," Proceedings of SPIE Vol. 5380 (SPIE, Bellingham, WA, 2004), p. 422, (2004).
    [CrossRef]
  5. P. Hariharan, Optical Interferometry (Academic Press., New York, 1985).
  6. S. Reichelt and H. Zappe, "Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing," Appl. Opt. 44,5786-5792 (2005).
    [CrossRef] [PubMed]
  7. C. P. Grover, "Random partial diffuser as beam splitter in a new, common path interferometer," Opt. Commun. 13,335-337 (1975).
    [CrossRef]
  8. J. Turunen, "Diffraction theory of microrelief gratings,", in Micro-optics, Elements, systems and applications, Hans Peter Hertzig, ed. (Taylor & Francis, London, 1997), pp. 31-52.
  9. P. Laakkonen, J. Lautanen, V. Kettunen, J. Turunen and M. Schirmer, "Multilevel diffractive elements in SIO2 by electron beam lithography and proportional etching with analog negative resist," J. Mod. Opt. 46,1295-1307 (1999).

2005 (1)

2002 (1)

1999 (2)

J. Ferrari, E. Frins, D. Perciante, and R. Dubra, "Robust one-beam interferometer with phase-delay control," Opt. Lett. 24,1272-1274 (1999).
[CrossRef]

P. Laakkonen, J. Lautanen, V. Kettunen, J. Turunen and M. Schirmer, "Multilevel diffractive elements in SIO2 by electron beam lithography and proportional etching with analog negative resist," J. Mod. Opt. 46,1295-1307 (1999).

1978 (1)

1975 (1)

C. P. Grover, "Random partial diffuser as beam splitter in a new, common path interferometer," Opt. Commun. 13,335-337 (1975).
[CrossRef]

Dubra, R.

Ferrari, J.

Ferrari, J. A.

Frins, E.

Frins, E. M.

Grover, C. P.

C. P. Grover, "Random partial diffuser as beam splitter in a new, common path interferometer," Opt. Commun. 13,335-337 (1975).
[CrossRef]

Hayslett, C. R.

Kettunen, V.

P. Laakkonen, J. Lautanen, V. Kettunen, J. Turunen and M. Schirmer, "Multilevel diffractive elements in SIO2 by electron beam lithography and proportional etching with analog negative resist," J. Mod. Opt. 46,1295-1307 (1999).

Koliopoulos, C.

Kwon, O.

Laakkonen, P.

P. Laakkonen, J. Lautanen, V. Kettunen, J. Turunen and M. Schirmer, "Multilevel diffractive elements in SIO2 by electron beam lithography and proportional etching with analog negative resist," J. Mod. Opt. 46,1295-1307 (1999).

Lautanen, J.

P. Laakkonen, J. Lautanen, V. Kettunen, J. Turunen and M. Schirmer, "Multilevel diffractive elements in SIO2 by electron beam lithography and proportional etching with analog negative resist," J. Mod. Opt. 46,1295-1307 (1999).

Perciante, D.

Reichelt, S.

Schirmer, M.

P. Laakkonen, J. Lautanen, V. Kettunen, J. Turunen and M. Schirmer, "Multilevel diffractive elements in SIO2 by electron beam lithography and proportional etching with analog negative resist," J. Mod. Opt. 46,1295-1307 (1999).

Shagam, R.

Turunen, J.

P. Laakkonen, J. Lautanen, V. Kettunen, J. Turunen and M. Schirmer, "Multilevel diffractive elements in SIO2 by electron beam lithography and proportional etching with analog negative resist," J. Mod. Opt. 46,1295-1307 (1999).

Wyant, J. C.

Zappe, H.

Appl. Opt. (2)

J. Mod. Opt. (1)

P. Laakkonen, J. Lautanen, V. Kettunen, J. Turunen and M. Schirmer, "Multilevel diffractive elements in SIO2 by electron beam lithography and proportional etching with analog negative resist," J. Mod. Opt. 46,1295-1307 (1999).

Opt. Commun. (1)

C. P. Grover, "Random partial diffuser as beam splitter in a new, common path interferometer," Opt. Commun. 13,335-337 (1975).
[CrossRef]

Opt. Lett. (2)

Other (3)

J. E. Millerd, S. J. Martinek, N. J. Brock, J. B. Hayes and J. C. Wyant, "Instantaneous phase-shift, pointdiffraction interferometer," Proceedings of SPIE Vol. 5380 (SPIE, Bellingham, WA, 2004), p. 422, (2004).
[CrossRef]

P. Hariharan, Optical Interferometry (Academic Press., New York, 1985).

J. Turunen, "Diffraction theory of microrelief gratings,", in Micro-optics, Elements, systems and applications, Hans Peter Hertzig, ed. (Taylor & Francis, London, 1997), pp. 31-52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Interferometer setup based on a diffractive lens L1 for testing mini-lenses L2 where f L1 and f L2 are the focal points, a is the distance from the test lens to the CCD-camera, and r is the radius of the both lenses.

Fig. 2.
Fig. 2.

Fabrication steps of the analog diffractive structures.

Fig. 3.
Fig. 3.

Middle part of the interference pattern produced by the diffractive lens.

Fig. 4.
Fig. 4.

Middle part of the interference pattern of a plano convex lens with a focal length EFL = 18 mm. The low intensity fringes are marked using black lines.

Fig. 5.
Fig. 5.

Interference pattern of the micro-injection molded mini-lens where two boxes show the magnified parts of the image presented in Figs. 6 (a) and (b). Here black color corresponds to high intensity value and white corresponds to low intensity value.

Fig. 6.
Fig. 6.

Magnifications of the interferogram illustrated in Fig. 5: (a) the shape error of the fabricated mini-lens and (b) the mould fabrication error.

Tables (1)

Tables Icon

Table 1. Theoretical efficiencies ηteor for the transmitted diffraction orders for designed diffractive lens.

Metrics