Abstract

We develop a spread-spectrum based approach to secure communications over existing fiber-optical networks. Secure transmission for a dedicated user is achieved by overlaying a covert channel onto a host channel in the existing active fiber link. The covert channel is optically encoded and temporally spread, and has average power below the noise floor in the fiber, making it hidden for a direct detection thus allowing for cryptographic and steganographic security capabilities. The presence for the host channel in the network provides an ad hoc security expansion and increases the difficulty for an eavesdropper to intercept and decode the secure signal.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Viterbi, "Spread spectrum communications - myths and realities," IEEE Commun. Mag. 17, 11-18 (1979)
    [CrossRef]
  2. P. R. Prucnal, M. A. Santoro, and T. R. Fan, "Spread spectrum fiber-optic local area network using optical processing," J. Lightwave Technol. 4, 547 (1986).
    [CrossRef]
  3. J. Shah, "Optical CDMA," Opt. Photon. Newslett. 14, 42-47 (2003)
    [CrossRef]
  4. J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990)
    [CrossRef]
  5. S. Galli, R. Menendez, P. Toliver, T. Banwell, J. Jackel, J. Young and S. Etermad "Experimental results on the simultaneous transmission of two 2.5 Gbps optical-CDMA channels and a 10 Gbps OOK channel within the same WDM window," Proc. OFC 2005 OWB3
  6. S. Shen and A.M. Weiner "Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation," IEEE Photonics Technol Lett. 13, 82-84 (2001)
    [CrossRef]
  7. Steganography defines the science of hiding information by embedding messages within other in such a way that no one apart from the intended recipient knows of the existence of the message.
  8. E. E. Narimanov and B. B. Wu, "Advanced coding techniques for asynchronous fiber-optical CDMA," Proc. CLEO 2005 JThE70
  9. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992)
    [CrossRef]
  10. E. Desurvire, Erbium-Doped Fiber Amplifiers, Principles and Applications (John Wiley & Sons, Inc., New York, 1994)
  11. J. A. Salehi, A. M. Weiner, and J.P. Heritage, "Temporal and statistical analysis of ultrashort light pulse code-division multiple access communications network," in Proceedings of IEEE Int. Conf. on Communications 2, 728-733 (1989)
  12. E. E. Narimanov, "Information capacity of nonlinear fiber-optical systems: fundamental limits and OCDMA performance," in Optical Code Division Multiple Access: Fundamentals and Applications, P. R. Prucnal, ed. (CRC, 2005)
  13. S. M. Ross, Introduction To Probability Models 6th Edition (Academic Press, 1997)
    [PubMed]
  14. G. P. Agrawal, Fiber-Optical Communication Systems 3rd Edition (Wiley-Interscience, 2002)
    [PubMed]

2003 (1)

J. Shah, "Optical CDMA," Opt. Photon. Newslett. 14, 42-47 (2003)
[CrossRef]

2001 (1)

S. Shen and A.M. Weiner "Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation," IEEE Photonics Technol Lett. 13, 82-84 (2001)
[CrossRef]

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992)
[CrossRef]

1990 (1)

J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990)
[CrossRef]

1986 (1)

P. R. Prucnal, M. A. Santoro, and T. R. Fan, "Spread spectrum fiber-optic local area network using optical processing," J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

1979 (1)

A. J. Viterbi, "Spread spectrum communications - myths and realities," IEEE Commun. Mag. 17, 11-18 (1979)
[CrossRef]

Fan, T. R.

P. R. Prucnal, M. A. Santoro, and T. R. Fan, "Spread spectrum fiber-optic local area network using optical processing," J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

Heritage, J. P.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990)
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992)
[CrossRef]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992)
[CrossRef]

Prucnal, P. R.

P. R. Prucnal, M. A. Santoro, and T. R. Fan, "Spread spectrum fiber-optic local area network using optical processing," J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

Salehi, J. A.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990)
[CrossRef]

Santoro, M. A.

P. R. Prucnal, M. A. Santoro, and T. R. Fan, "Spread spectrum fiber-optic local area network using optical processing," J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

Shah, J.

J. Shah, "Optical CDMA," Opt. Photon. Newslett. 14, 42-47 (2003)
[CrossRef]

Shen, S.

S. Shen and A.M. Weiner "Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation," IEEE Photonics Technol Lett. 13, 82-84 (2001)
[CrossRef]

Viterbi, A. J.

A. J. Viterbi, "Spread spectrum communications - myths and realities," IEEE Commun. Mag. 17, 11-18 (1979)
[CrossRef]

Weiner, A. M.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992)
[CrossRef]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990)
[CrossRef]

Weiner, A.M.

S. Shen and A.M. Weiner "Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation," IEEE Photonics Technol Lett. 13, 82-84 (2001)
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992)
[CrossRef]

IEEE Commun. Mag. (1)

A. J. Viterbi, "Spread spectrum communications - myths and realities," IEEE Commun. Mag. 17, 11-18 (1979)
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992)
[CrossRef]

IEEE Photonics Technol Lett. (1)

S. Shen and A.M. Weiner "Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation," IEEE Photonics Technol Lett. 13, 82-84 (2001)
[CrossRef]

J. Lightwave Technol. (2)

P. R. Prucnal, M. A. Santoro, and T. R. Fan, "Spread spectrum fiber-optic local area network using optical processing," J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990)
[CrossRef]

Opt. Photon. Newslett. (1)

J. Shah, "Optical CDMA," Opt. Photon. Newslett. 14, 42-47 (2003)
[CrossRef]

Other (8)

S. Galli, R. Menendez, P. Toliver, T. Banwell, J. Jackel, J. Young and S. Etermad "Experimental results on the simultaneous transmission of two 2.5 Gbps optical-CDMA channels and a 10 Gbps OOK channel within the same WDM window," Proc. OFC 2005 OWB3

E. Desurvire, Erbium-Doped Fiber Amplifiers, Principles and Applications (John Wiley & Sons, Inc., New York, 1994)

J. A. Salehi, A. M. Weiner, and J.P. Heritage, "Temporal and statistical analysis of ultrashort light pulse code-division multiple access communications network," in Proceedings of IEEE Int. Conf. on Communications 2, 728-733 (1989)

E. E. Narimanov, "Information capacity of nonlinear fiber-optical systems: fundamental limits and OCDMA performance," in Optical Code Division Multiple Access: Fundamentals and Applications, P. R. Prucnal, ed. (CRC, 2005)

S. M. Ross, Introduction To Probability Models 6th Edition (Academic Press, 1997)
[PubMed]

G. P. Agrawal, Fiber-Optical Communication Systems 3rd Edition (Wiley-Interscience, 2002)
[PubMed]

Steganography defines the science of hiding information by embedding messages within other in such a way that no one apart from the intended recipient knows of the existence of the message.

E. E. Narimanov and B. B. Wu, "Advanced coding techniques for asynchronous fiber-optical CDMA," Proc. CLEO 2005 JThE70

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

(In color) Optical Spectrum of different hybrid CDM-WDM networks using the methods of a) Ref. [6], b) Ref. [5] and c) Scheme employed in this paper

Fig. 2.
Fig. 2.

Schematic diagram of the proposed secure transmission over public fiber-optical communication network. The transmitter can be e.g. a mode locked fiber laser.

Fig. 3.
Fig. 3.

Spectral phase encoder (left) and decoder (right)

Fig. 4.
Fig. 4.

Amplitude distribution of the real part of an encoded waveform

Fig. 5
Fig. 5

The pulse spectrum of the band-limited pulse f(t)

Fig. 6
Fig. 6

Band-limited pulse spectrum

Fig. 7.
Fig. 7.

Histogram of detected signal power (Top row: bit 0 and 1 (a, b) Host Channel), (Bottom Row: improperly and properly decoded bit (c, d) Secure Channel) (Phase mask has 128 chips, initial peak power of Psecure/Phost = 3 and Average Gaussian power = 0.01Phost)

Fig. 8.(a)
Fig. 8.(a)

Simulated waveforms before the detector

Fig. 8.(b)
Fig. 8.(b)

Simulated waveforms at the detector

Fig. 9.
Fig. 9.

BER vs. Peak power ratio of initial pulses of secure to host user under different levels of time spreading and noise regimes (No additive noise in the left column and average additive noise power equal to 0.01PH in the right column)

Fig. 10.
Fig. 10.

Power spectrum of various components at the fiber end (Visible fluctuations are due to interferences)

Fig. 11.
Fig. 11.

Statistics of genuine noise and secure signal

Fig. 12.
Fig. 12.

Q-factor for the secure channel vs. the fraction (in percents) of correct chips Π present in a decoding phase mask of the eavesdropper.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

A = n + P e
f I 0 ( I ) = 1 N ̄ e 1 N ̄ 0
A = U + iV
F U ( u ) = P { n Re + P Cos ( θ ) u } = π π u P Cos ( θ ) e n 2 N ̄ 1 π N ̄ 1 1 2 π dn
f U ( u ) = π π e ( u P Cos ( θ ) ) 2 N ̄ 1 2 N ̄ 1 π 3 2
f V ( v ) = π π e ( v P Sin ( θ ) ) 2 N ̄ 1 2 N ̄ 1 π 3 2
f I 1 ( I ) = d dI ( 1 v 2 1 v 2 f U ( u ) f V ( v ) du dv )
= I I e I + P 2 P v N 1 N ̄ 1 π 1 v 2 dv
h ( t ) = 1 2 π W F ( ω ) G ( ω ) Exp ( iωt )
G ( ω ) = n = 1 C rect ( ω Ω + ( C + 1 2 n ) Ω ) Exp ( n )
n host ( t ) = q sec ure ( t ) + q add ( t )
N host ( t ) = n host ( t ) 2 = Q sec ure ( t ) + Q add
q sec ure ( t ) = [ ψ 1 h ( t + T s ) + ( 1 ψ 1 ) k ( t + T s ] ) e 1 + h ( t ) e 3 + [ ψ 2 h ( t T s ) + ( 1 + ψ 2 ) k ( t T s ) ] e 2
Q sec ure ( t ) = h ( t ) 2 + 1 2 ( h ( t + T s ) 2 + h ( t T s ) 2 + k ( t + T s ) 2 + k ( t T s ) 2 )
Q sec ure ( t ) = h ( t ) 2 + h ( t + T s ) 2 + h ( t T s ) 2
Q sec ure ( t ) T s = 1 T s T s Q sec ure ( t )
N host ( t ) = h ( t ) 2 + h ( t + T s ) 2 + h ( t T s ) 2 T S + Q add
n eav ( t ) = q host ( t ) + q incorrect ( t ) + q add ( t )
n sec ure ( t ) = q host ( t ) + q add ( t )
N eav ( t ) = Q host ( t ) + Q incorrect ( t ) + Q add
N sec ure ( t ) = Q host ( t ) + Q add
q host ( t ) = k ψ k h ( t kT H ) e k
Q host ( t ) = 1 2 k h ( t kT H ) 2
Q incorrect ( t ) = h ( t ) 2
N eav ( t ) = 1 2 k h ( t kT H ) 2 T H + h ( t ) 2 T H + Q add
N sec ure ( t ) = 1 2 k h ( t kT H ) 2 T H + Q add
N ̄ 0 host = N ̄ 1 host = N host ( t ) = P s C Sin c 2 ( Ω 2 [t+ T s ] )+ P s C Sin c 2 ( Ω 2 t ) + P s C Sin c 2 ( Ω 2 [t+ T s ] ) T S + Q add
N ̄ 0 sec ure = N eav ( t ) = k 1 2 P H C Sinc 2 Ω 2 ( Ω 2 [ t kT H ] ) T H + P s C Sinc 2 ( Ω 2 t ) T H + Q add
N ̄ 1 sec ure = N sec ure ( t ) = k 1 2 P H C Sinc 2 ( Ω 2 [ t kT H ] ) T H + Q add
BER = ( 1 2 0 I th dI I I Exp ( I + P 2 P y N ̄ 1 ) N ̄ 1 π I y 2 dy ) + e I th N ̄ 0 2
I th I th Exp ( I th + P 2 P y N ̄ 1 ) N ̄ 1 π I th y 2 dy = e I th N ̄ 0 N ̄ 0
Q = I sec ure I eav σ sec ure + σ eav

Metrics