Abstract

We report a method for controlling the size of a Ge (germanium) nanostructure by changing the angle between the ultrafast laser polarization and the crystal axis of Ge. The nanostructure size dependence on the laser polarization with respect to the Ge crystal axis exhibits a sinusoidal function with a minimum size at (100) axis. Moreover, the measurement of transient reflection reveals the presence of large anisotropies in both its amplitude and its relaxation dynamics with a minimum at (100) crystal axis. This implies that the observed anisotropic dependence of nanostructure size of Ge is followed by a different carrier density as well as its relaxation process, depending on the orientation of the Ge crystal axis only at near and above threshold fluence.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Qu and X. Peng, "Control of photoluminescence properties of CdSe nanocrystals in growth," J. Am. Chem. Soc. 124,2049 (2002).
    [CrossRef] [PubMed]
  2. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57,1046 (1990).
    [CrossRef]
  3. F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).
  4. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995).
    [CrossRef]
  5. J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176 (2004).
    [CrossRef] [PubMed]
  6. F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575 (2002).
    [CrossRef]
  7. J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004).
    [CrossRef]
  8. T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383 (2000).
    [CrossRef]
  9. S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005).
    [CrossRef]
  10. The threshold energy 0.492J/cm2 is defined as the energy showing as amorphous layer on the part of focusing area after ablation.
  11. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
    [CrossRef] [PubMed]
  12. C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454 (1983).
    [CrossRef]
  13. D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581 (2003).
    [CrossRef] [PubMed]
  14. T. Pfeifer, W. Kutt, and H. Kurz, "Generation and detection of coherent optical phonons in germanium," Phys. Rev. Lett. 69, 3248 (1992).
    [CrossRef] [PubMed]
  15. A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003).
    [CrossRef]
  16. J. Bonse, S. M. Wiggins, and J. Solis, "Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide," J. Appl. Phys. 96, 2352 (2004).
    [CrossRef]

2005

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005).
[CrossRef]

2004

J. Bonse, S. M. Wiggins, and J. Solis, "Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide," J. Appl. Phys. 96, 2352 (2004).
[CrossRef]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176 (2004).
[CrossRef] [PubMed]

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004).
[CrossRef]

2003

A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003).
[CrossRef]

D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581 (2003).
[CrossRef] [PubMed]

2002

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575 (2002).
[CrossRef]

L. Qu and X. Peng, "Control of photoluminescence properties of CdSe nanocrystals in growth," J. Am. Chem. Soc. 124,2049 (2002).
[CrossRef] [PubMed]

2001

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[CrossRef] [PubMed]

2000

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383 (2000).
[CrossRef]

1999

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

1995

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995).
[CrossRef]

1992

T. Pfeifer, W. Kutt, and H. Kurz, "Generation and detection of coherent optical phonons in germanium," Phys. Rev. Lett. 69, 3248 (1992).
[CrossRef] [PubMed]

1990

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57,1046 (1990).
[CrossRef]

1983

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454 (1983).
[CrossRef]

Barve, A.

A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003).
[CrossRef]

Bauer, T.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

Blome, C.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[CrossRef] [PubMed]

Bonse, J.

J. Bonse, S. M. Wiggins, and J. Solis, "Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide," J. Appl. Phys. 96, 2352 (2004).
[CrossRef]

Canham, L. T.

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57,1046 (1990).
[CrossRef]

Chichkov, B. N.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

Dietrich, C.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[CrossRef] [PubMed]

Du, D.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995).
[CrossRef]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995).
[CrossRef]

Fallnich, C.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383 (2000).
[CrossRef]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383 (2000).
[CrossRef]

Hirlimann, C.

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454 (1983).
[CrossRef]

Hoegen, M. H.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[CrossRef] [PubMed]

Jeoung, S. C.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005).
[CrossRef]

Kabashin, A. V.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176 (2004).
[CrossRef] [PubMed]

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004).
[CrossRef]

Kamlage, G.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

Kennedy, I. M.

A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003).
[CrossRef]

Kim, C. S.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005).
[CrossRef]

Kim, H. S.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005).
[CrossRef]

Kohno, J.-Y.

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575 (2002).
[CrossRef]

Kondow, T.

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575 (2002).
[CrossRef]

Korte, F.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

Kurz, H.

T. Pfeifer, W. Kutt, and H. Kurz, "Generation and detection of coherent optical phonons in germanium," Phys. Rev. Lett. 69, 3248 (1992).
[CrossRef] [PubMed]

Kutt, W.

T. Pfeifer, W. Kutt, and H. Kurz, "Generation and detection of coherent optical phonons in germanium," Phys. Rev. Lett. 69, 3248 (1992).
[CrossRef] [PubMed]

Lee, H. W. H.

A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003).
[CrossRef]

Lee, J.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005).
[CrossRef]

Leppert, V. J.

A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003).
[CrossRef]

Linde, D.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[CrossRef] [PubMed]

Luong, J. H. T.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176 (2004).
[CrossRef] [PubMed]

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004).
[CrossRef]

Mafune, F.

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575 (2002).
[CrossRef]

Mazur, E.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383 (2000).
[CrossRef]

Meunier, M.

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004).
[CrossRef]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176 (2004).
[CrossRef] [PubMed]

Mourou, G.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995).
[CrossRef]

Murali, A.

A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003).
[CrossRef]

Nolte, S.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

Park, C. O.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005).
[CrossRef]

Park, M. I.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005).
[CrossRef]

Parker, S. C.

D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581 (2003).
[CrossRef] [PubMed]

Peng, X.

L. Qu and X. Peng, "Control of photoluminescence properties of CdSe nanocrystals in growth," J. Am. Chem. Soc. 124,2049 (2002).
[CrossRef] [PubMed]

Pfeifer, T.

T. Pfeifer, W. Kutt, and H. Kurz, "Generation and detection of coherent optical phonons in germanium," Phys. Rev. Lett. 69, 3248 (1992).
[CrossRef] [PubMed]

Poulin, S.

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004).
[CrossRef]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995).
[CrossRef]

Qu, L.

L. Qu and X. Peng, "Control of photoluminescence properties of CdSe nanocrystals in growth," J. Am. Chem. Soc. 124,2049 (2002).
[CrossRef] [PubMed]

Risbud, S. H.

A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003).
[CrossRef]

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995).
[CrossRef]

Sacher, E.

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004).
[CrossRef]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176 (2004).
[CrossRef] [PubMed]

Sayle, D. C.

D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581 (2003).
[CrossRef] [PubMed]

Shank, C. V.

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454 (1983).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[CrossRef] [PubMed]

Solis, J.

J. Bonse, S. M. Wiggins, and J. Solis, "Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide," J. Appl. Phys. 96, 2352 (2004).
[CrossRef]

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995).
[CrossRef]

Sylvestre, J. P.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176 (2004).
[CrossRef] [PubMed]

Sylvestre, J.-P.

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004).
[CrossRef]

Takeda, Y.

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575 (2002).
[CrossRef]

Tarasevitch, A.

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[CrossRef] [PubMed]

Wagner, T.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

Welling, H.

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

Wiggins, S. M.

J. Bonse, S. M. Wiggins, and J. Solis, "Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide," J. Appl. Phys. 96, 2352 (2004).
[CrossRef]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383 (2000).
[CrossRef]

Yen, R.

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454 (1983).
[CrossRef]

Appl. Phys. A

F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383 (2000).
[CrossRef]

Appl. Phys. Lett.

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57,1046 (1990).
[CrossRef]

J. Am. Chem. Soc.

L. Qu and X. Peng, "Control of photoluminescence properties of CdSe nanocrystals in growth," J. Am. Chem. Soc. 124,2049 (2002).
[CrossRef] [PubMed]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176 (2004).
[CrossRef] [PubMed]

D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581 (2003).
[CrossRef] [PubMed]

J. Appl. Phys.

J. Bonse, S. M. Wiggins, and J. Solis, "Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide," J. Appl. Phys. 96, 2352 (2004).
[CrossRef]

J. Phys. Chem. B

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575 (2002).
[CrossRef]

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004).
[CrossRef]

Japn. J. Appl. Phys.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005).
[CrossRef]

Nano Lett.

A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003).
[CrossRef]

Opt. Commun.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995).
[CrossRef]

Phys. Rev. Lett.

T. Pfeifer, W. Kutt, and H. Kurz, "Generation and detection of coherent optical phonons in germanium," Phys. Rev. Lett. 69, 3248 (1992).
[CrossRef] [PubMed]

K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001).
[CrossRef] [PubMed]

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454 (1983).
[CrossRef]

Other

The threshold energy 0.492J/cm2 is defined as the energy showing as amorphous layer on the part of focusing area after ablation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

AFM images of the processed regions at a fluence of 0.56 J / cm 2 for the total area (a), and the center region (b). EDS spectrum of the Ge surface after being exposed to the femtosecond laser (c) and HRTEM image of Ge nanostructure (d) are shown. It should be noted that abundant oxygen is observed in addition to Ge.

Fig. 2.
Fig. 2.

The normalized size distributions of Ge nanostructures are shown in (a) with various angles between laser polarization and crystal axis of Ge at 2Fth . The numbers denote relative angle from crystal (100) axis. Particle size is strongly affected by the polarization with respect to the crystal axis (b), and the average size is a sinusoidal function with a minimum at the (100) axis. The gray lines are simply visual guides. The size and number density of structures vs. the fluences (c) are shown, and two gray lines in (c) are only visual guides.

Fig. 3.
Fig. 3.

Transient polarization-dependent reflectivity changes as a function of the azimuthal angle between the polarization and Ge crystal axis with different laser fluences near zero delay time. The gray lines are a visual guide.

Fig. 4.
Fig. 4.

Reflectivity changes with different fluences and different polarization are measured with various time delay from -10 to several 25 ps.

Metrics