Abstract

By the use of wavelength-modulation diode laser spectroscopy, water vapor and oxygen are detected in scattering media nonintrusively, at 980 nm and 760 nm, respectively. The technique demonstrated is based on the fact that free gases have extremely sharp absorption structures in comparison with the broad features of bulk material. Water vapor and oxygen measurements have been performed during the drying process of wood. The results suggest that the demonstrated technique can give information about the drying process of wood to complement that of commercially available moisture meters. In particular, the time when all the free water has evaporated from the wood can be readily identified by a strong falloff in the water vapor signal accompanied by the reaching of a high-level plateau in the molecular oxygen signal. Furthermore, the same point is identified in the differential optical absorption signal for liquid water, with a sharp increase by an order of magnitude in the ratio of the signal intensities at 980 nm and 760 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dinwoodie, "Timber: Its nature and behaviour," (E & FN, 2000).
    [CrossRef]
  2. B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
    [CrossRef]
  3. S. Joseph Cohen and T C.S Yang, "Progress in food dehydration," Trends in Food Science & Technology6, (1995).
  4. D. A. Skoog and M.D. West, "Fundamentals of Analytical Chemistry," 7th edition, (Saunders, 1995).
  5. G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., "Medical optical tomography, functional imaging and monitoring," in SPIE Institute Series, Vol. 11, (SPIE, 1993).
  6. C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, "Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets," Anal. Chem. 77, 1055-1059 (2005).
    [CrossRef] [PubMed]
  7. T. J. Farrell, M. S. Pattersson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
    [CrossRef] [PubMed]
  8. M. S. Pattersson, B. Chance, and B. C. Wilson, "Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef]
  9. C. af Klinteberg, A. Pifferi, S. Andersson-Engels, R. Cubeddu, and S. Svanberg, "In vivo absorption spectroscopy of tumor sensitizers using femtosecond white light," Appl. Opt. 44, 2213-2220 (2005).
    [CrossRef] [PubMed]
  10. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, "Analysis of gas dispersed in scattering media," Opt. Lett. 26,16-18 (2001).
    [CrossRef]
  11. J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, "Laser spectroscopy on free molecular oxygen dispersed in wood materials," Appl. Phys. B 77, 691-695 (2003).
    [CrossRef]
  12. L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, "Diode laser absorption spectroscopy for studies of gas exchange in fruits," Opt. Lasers Eng. 44, 687-698 (2006).
    [CrossRef]
  13. L. Persson, B. Anderson, M. Andersson, M. Sjöholm, and S. Svanberg, "Studies of gas exchange in fruits using laser spectroscopic techniques," in Proceedings of Fruitic05 Symposium (Montpellier, France, September 12-16, 2005).
  14. G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels,and S. Svanberg, "Concentration measurement of gas imbedded in scattering media employing time and spatially resolved techniques," Appl. Opt. 41, 3538-3544 (2002).
    [CrossRef] [PubMed]
  15. L. Persson, K. Svanberg, and S. Svanberg, "On the potential of human sinus cavity diagnostics using diode laser gas spectroscopy," Appl. Phys. B 82,313-317 (2006).
    [CrossRef]
  16. L. Sandra, B. Roderick, and M. L. Roderick, "Plant-water relations and the fibre saturation point," New Phytol. 168, 25-37 (2005).
    [CrossRef]
  17. P. Perré, "The role of wood anatomy in the drying of wood: Great Oaks from little acorns grow," 8th Int. IUFRO Wood Drying Conference (Brasov, Rumania, August 24-29, 2003).
  18. M. Goyeneche, D. Lasseux, and D. Bruneau, "A film-flow model to describe free water transport during drying of a hydroscopic capillary porous medium," Transp. Porous Media 48, 125-158 (2002).
    [CrossRef]
  19. L. James, "Electric moisture meters for wood," Gen. Tech. Rep. FPL-GTR-6. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1988.
  20. H. Forsén and V. Tarvainen, "Accuracy and functionality of hand held wood moisture content meters," VTT Publications 420 (2000).
  21. P. J. Wilson, "Accuracy of a capacitance-type and three resistance-type pin meters for measuring wood moisture content," Forest Products Journal,  49, 29-32 (1999).
  22. C. Nordling and J. Osterman, "Physics Handbook," 4th ed. (Studentlitteratur, 1987).
  23. S. Matcher, M Cope, and D. Delpy, "Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy," Phys. Med. Biol. 39,177-196 (1994).
    [CrossRef] [PubMed]
  24. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50,2559-2571 (2005).
    [CrossRef] [PubMed]

2006 (2)

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, "Diode laser absorption spectroscopy for studies of gas exchange in fruits," Opt. Lasers Eng. 44, 687-698 (2006).
[CrossRef]

L. Persson, K. Svanberg, and S. Svanberg, "On the potential of human sinus cavity diagnostics using diode laser gas spectroscopy," Appl. Phys. B 82,313-317 (2006).
[CrossRef]

2005 (4)

L. Sandra, B. Roderick, and M. L. Roderick, "Plant-water relations and the fibre saturation point," New Phytol. 168, 25-37 (2005).
[CrossRef]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50,2559-2571 (2005).
[CrossRef] [PubMed]

C. af Klinteberg, A. Pifferi, S. Andersson-Engels, R. Cubeddu, and S. Svanberg, "In vivo absorption spectroscopy of tumor sensitizers using femtosecond white light," Appl. Opt. 44, 2213-2220 (2005).
[CrossRef] [PubMed]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, "Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets," Anal. Chem. 77, 1055-1059 (2005).
[CrossRef] [PubMed]

2003 (1)

J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, "Laser spectroscopy on free molecular oxygen dispersed in wood materials," Appl. Phys. B 77, 691-695 (2003).
[CrossRef]

2002 (2)

M. Goyeneche, D. Lasseux, and D. Bruneau, "A film-flow model to describe free water transport during drying of a hydroscopic capillary porous medium," Transp. Porous Media 48, 125-158 (2002).
[CrossRef]

G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels,and S. Svanberg, "Concentration measurement of gas imbedded in scattering media employing time and spatially resolved techniques," Appl. Opt. 41, 3538-3544 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

P. J. Wilson, "Accuracy of a capacitance-type and three resistance-type pin meters for measuring wood moisture content," Forest Products Journal,  49, 29-32 (1999).

1995 (1)

S. Joseph Cohen and T C.S Yang, "Progress in food dehydration," Trends in Food Science & Technology6, (1995).

1994 (1)

S. Matcher, M Cope, and D. Delpy, "Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy," Phys. Med. Biol. 39,177-196 (1994).
[CrossRef] [PubMed]

1992 (2)

B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
[CrossRef]

T. J. Farrell, M. S. Pattersson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

1989 (1)

Abrahamsson, C.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, "Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets," Anal. Chem. 77, 1055-1059 (2005).
[CrossRef] [PubMed]

af Klinteberg, C.

Alnis, J.

Anderson, B.

J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, "Laser spectroscopy on free molecular oxygen dispersed in wood materials," Appl. Phys. B 77, 691-695 (2003).
[CrossRef]

Andersson-Engels, S.

Berglund, B.

B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
[CrossRef]

Bruneau, D.

M. Goyeneche, D. Lasseux, and D. Bruneau, "A film-flow model to describe free water transport during drying of a hydroscopic capillary porous medium," Transp. Porous Media 48, 125-158 (2002).
[CrossRef]

Brunekreef, B.

B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
[CrossRef]

Chance, B.

Cope, M

S. Matcher, M Cope, and D. Delpy, "Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy," Phys. Med. Biol. 39,177-196 (1994).
[CrossRef] [PubMed]

Cubeddu, R.

Delpy, D.

S. Matcher, M Cope, and D. Delpy, "Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy," Phys. Med. Biol. 39,177-196 (1994).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Pattersson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

Folestad, S.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, "Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets," Anal. Chem. 77, 1055-1059 (2005).
[CrossRef] [PubMed]

Gao, H.

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, "Diode laser absorption spectroscopy for studies of gas exchange in fruits," Opt. Lasers Eng. 44, 687-698 (2006).
[CrossRef]

Goyeneche, M.

M. Goyeneche, D. Lasseux, and D. Bruneau, "A film-flow model to describe free water transport during drying of a hydroscopic capillary porous medium," Transp. Porous Media 48, 125-158 (2002).
[CrossRef]

Ingvar, C.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50,2559-2571 (2005).
[CrossRef] [PubMed]

Johansson, J.

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, "Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets," Anal. Chem. 77, 1055-1059 (2005).
[CrossRef] [PubMed]

Joseph Cohen, S.

S. Joseph Cohen and T C.S Yang, "Progress in food dehydration," Trends in Food Science & Technology6, (1995).

Knöppel, H.

B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
[CrossRef]

Lasseux, D.

M. Goyeneche, D. Lasseux, and D. Bruneau, "A film-flow model to describe free water transport during drying of a hydroscopic capillary porous medium," Transp. Porous Media 48, 125-158 (2002).
[CrossRef]

Lindblom, P.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50,2559-2571 (2005).
[CrossRef] [PubMed]

Lindvall, T.

B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
[CrossRef]

Maroni, M.

B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
[CrossRef]

Matcher, S.

S. Matcher, M Cope, and D. Delpy, "Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy," Phys. Med. Biol. 39,177-196 (1994).
[CrossRef] [PubMed]

Mølhave, L.

B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
[CrossRef]

Pattersson, M. S.

T. J. Farrell, M. S. Pattersson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

M. S. Pattersson, B. Chance, and B. C. Wilson, "Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
[CrossRef]

Persson, L.

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, "Diode laser absorption spectroscopy for studies of gas exchange in fruits," Opt. Lasers Eng. 44, 687-698 (2006).
[CrossRef]

L. Persson, K. Svanberg, and S. Svanberg, "On the potential of human sinus cavity diagnostics using diode laser gas spectroscopy," Appl. Phys. B 82,313-317 (2006).
[CrossRef]

Pifferi, A.

Roderick, B.

L. Sandra, B. Roderick, and M. L. Roderick, "Plant-water relations and the fibre saturation point," New Phytol. 168, 25-37 (2005).
[CrossRef]

Roderick, M. L.

L. Sandra, B. Roderick, and M. L. Roderick, "Plant-water relations and the fibre saturation point," New Phytol. 168, 25-37 (2005).
[CrossRef]

Sandra, L.

L. Sandra, B. Roderick, and M. L. Roderick, "Plant-water relations and the fibre saturation point," New Phytol. 168, 25-37 (2005).
[CrossRef]

Sjöholm, M.

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, "Diode laser absorption spectroscopy for studies of gas exchange in fruits," Opt. Lasers Eng. 44, 687-698 (2006).
[CrossRef]

J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, "Laser spectroscopy on free molecular oxygen dispersed in wood materials," Appl. Phys. B 77, 691-695 (2003).
[CrossRef]

G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels,and S. Svanberg, "Concentration measurement of gas imbedded in scattering media employing time and spatially resolved techniques," Appl. Opt. 41, 3538-3544 (2002).
[CrossRef] [PubMed]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, "Analysis of gas dispersed in scattering media," Opt. Lett. 26,16-18 (2001).
[CrossRef]

Skov, P.

B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
[CrossRef]

Somesfalean, G.

Svanberg, K.

L. Persson, K. Svanberg, and S. Svanberg, "On the potential of human sinus cavity diagnostics using diode laser gas spectroscopy," Appl. Phys. B 82,313-317 (2006).
[CrossRef]

Svanberg, S.

L. Persson, K. Svanberg, and S. Svanberg, "On the potential of human sinus cavity diagnostics using diode laser gas spectroscopy," Appl. Phys. B 82,313-317 (2006).
[CrossRef]

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, "Diode laser absorption spectroscopy for studies of gas exchange in fruits," Opt. Lasers Eng. 44, 687-698 (2006).
[CrossRef]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, "Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets," Anal. Chem. 77, 1055-1059 (2005).
[CrossRef] [PubMed]

C. af Klinteberg, A. Pifferi, S. Andersson-Engels, R. Cubeddu, and S. Svanberg, "In vivo absorption spectroscopy of tumor sensitizers using femtosecond white light," Appl. Opt. 44, 2213-2220 (2005).
[CrossRef] [PubMed]

J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, "Laser spectroscopy on free molecular oxygen dispersed in wood materials," Appl. Phys. B 77, 691-695 (2003).
[CrossRef]

G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels,and S. Svanberg, "Concentration measurement of gas imbedded in scattering media employing time and spatially resolved techniques," Appl. Opt. 41, 3538-3544 (2002).
[CrossRef] [PubMed]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, "Analysis of gas dispersed in scattering media," Opt. Lett. 26,16-18 (2001).
[CrossRef]

Svensson, T.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50,2559-2571 (2005).
[CrossRef] [PubMed]

Swartling, J.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50,2559-2571 (2005).
[CrossRef] [PubMed]

Taroni, P.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50,2559-2571 (2005).
[CrossRef] [PubMed]

Torricelli, A.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50,2559-2571 (2005).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Pattersson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Wilson, P. J.

P. J. Wilson, "Accuracy of a capacitance-type and three resistance-type pin meters for measuring wood moisture content," Forest Products Journal,  49, 29-32 (1999).

Yang, T C.S

S. Joseph Cohen and T C.S Yang, "Progress in food dehydration," Trends in Food Science & Technology6, (1995).

Anal. Chem. (1)

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, "Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets," Anal. Chem. 77, 1055-1059 (2005).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (2)

L. Persson, K. Svanberg, and S. Svanberg, "On the potential of human sinus cavity diagnostics using diode laser gas spectroscopy," Appl. Phys. B 82,313-317 (2006).
[CrossRef]

J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, "Laser spectroscopy on free molecular oxygen dispersed in wood materials," Appl. Phys. B 77, 691-695 (2003).
[CrossRef]

Forest Products Journal (1)

P. J. Wilson, "Accuracy of a capacitance-type and three resistance-type pin meters for measuring wood moisture content," Forest Products Journal,  49, 29-32 (1999).

Indoor Air (1)

B. Berglund, B. Brunekreef, H. Knöppel, T. Lindvall, M. Maroni, L. Mølhave, and P. Skov, "Effects of indoor air pollution on human health," Indoor Air 2, 2-25 (1992).
[CrossRef]

Med. Phys. (1)

T. J. Farrell, M. S. Pattersson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

New Phytol. (1)

L. Sandra, B. Roderick, and M. L. Roderick, "Plant-water relations and the fibre saturation point," New Phytol. 168, 25-37 (2005).
[CrossRef]

Opt. Lasers Eng. (1)

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, "Diode laser absorption spectroscopy for studies of gas exchange in fruits," Opt. Lasers Eng. 44, 687-698 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (2)

S. Matcher, M Cope, and D. Delpy, "Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy," Phys. Med. Biol. 39,177-196 (1994).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50,2559-2571 (2005).
[CrossRef] [PubMed]

Transp. Porous Media (1)

M. Goyeneche, D. Lasseux, and D. Bruneau, "A film-flow model to describe free water transport during drying of a hydroscopic capillary porous medium," Transp. Porous Media 48, 125-158 (2002).
[CrossRef]

Trends in Food Science & Technology (1)

S. Joseph Cohen and T C.S Yang, "Progress in food dehydration," Trends in Food Science & Technology6, (1995).

Other (8)

D. A. Skoog and M.D. West, "Fundamentals of Analytical Chemistry," 7th edition, (Saunders, 1995).

G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., "Medical optical tomography, functional imaging and monitoring," in SPIE Institute Series, Vol. 11, (SPIE, 1993).

P. Perré, "The role of wood anatomy in the drying of wood: Great Oaks from little acorns grow," 8th Int. IUFRO Wood Drying Conference (Brasov, Rumania, August 24-29, 2003).

L. James, "Electric moisture meters for wood," Gen. Tech. Rep. FPL-GTR-6. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1988.

H. Forsén and V. Tarvainen, "Accuracy and functionality of hand held wood moisture content meters," VTT Publications 420 (2000).

C. Nordling and J. Osterman, "Physics Handbook," 4th ed. (Studentlitteratur, 1987).

L. Persson, B. Anderson, M. Andersson, M. Sjöholm, and S. Svanberg, "Studies of gas exchange in fruits using laser spectroscopic techniques," in Proceedings of Fruitic05 Symposium (Montpellier, France, September 12-16, 2005).

J. M. Dinwoodie, "Timber: Its nature and behaviour," (E & FN, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Microscopic pictures of hardwood (balsa) and softwood (pine).

Fig. 2.
Fig. 2.

Wood-drying process. At first the cells are filled with water, but in the end no free water exists, and the absorbed water in cell walls is dried out until an equilibrium state with the surrounding environment is reached.

Fig. 3.
Fig. 3.

Schematic drawing of the spectroscopic setup of similar diode laser spectrometers for oxygen (left) and water vapor (right). Typical readings of the WMS signals for oxygen and water vapor in wood are shown in the lower part. The half widths of the signals are of the order of a few GHz in both cases. The half widths at half maximum (HWHM) of the absorption lines are, according to HITRAN, 1.61 GHz for oxygen and 2.72 GHz for water vapor at standard conditions.

Fig. 4.
Fig. 4.

Measured moisture contents during the drying process of the sample. Curves indicate moisture content (blue curve) when measured by logging the weight of the sample, (red dashed curve) when measured by using a resistance moisture meter (Protimeter Timbermaster), and (black dash-dotted curve) when measured with a dielelectric moisture meter (MC-300W, Exotek). The fiber saturation point (FSP) is indicated in the figure (moisture content=30%).

Fig. 5.
Fig. 5.

(a) Measured temperature at the surface of the sample and measured weight during the drying process. (b) Vapor pressure as a function of the temperature [22].

Fig. 6.
Fig. 6.

(a) Equivalent mean path length for water vapor and oxygen during the drying process of balsa. (b) Ratio between detected equivalent mean path length for water vapor and oxygen. (c) Direct signals for water vapor and oxygen during the drying process of balsa. (d) Ratio between detected direct signal for water vapor and oxygen.

Fig. 7.
Fig. 7.

(a) Absorption spectrum of 1 cm pure water reproduced from the measurements by Matcher et al. [23]. (b) Images of the sample on the detection side for oxygen (760 nm) and water vapor (980 nm) during its drying process.

Metrics