A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
[Crossref]
M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997), and references therein.
[Crossref]
S. D. Gedney, “An anisotropic perfectly matched Layer-Absorbing Medium for the truncation of FDTD Lattice,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996), and references therein.
[Crossref]
J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[Crossref]
[PubMed]
S. T. Ho and P. Kumar, “Quantum optics in a dielectric: Macroscopic electromagnetic-field and medium operators for a linear dispersive Lossy medium-A microscopic derivation of the operators and their commutation relations,” J. Opt. Soc. Am. B 10, 1620–1636 (1993).
[Crossref]
D. Y. Chu, M. K. Chin, S. Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs Quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).
[Crossref]
S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[Crossref]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Quantum theory of nondegenerate multiwave mixing (I) - General formulation,” Phys. Rev. A 37, 2017–2032 (1988).
[Crossref]
[PubMed]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Vector-field quantum model of degenerate four-wave mixing,” Phys. Rev. A 34, 293–303 (July 1986).
[Crossref]
[PubMed]
J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexandre, “Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs,” Phys. Rev. Lett. 55, 2074–2077 (1985).
[Crossref]
[PubMed]
R. F. Kazarinov, C. H. Henry, and R. A. Logan, “Longitudinal mode self-stabilization in semicondcutor lasers,” J. Appl. Phys. 53, 4631–4644 (1982).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in Isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]
J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexandre, “Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs,” Phys. Rev. Lett. 55, 2074–2077 (1985).
[Crossref]
[PubMed]
J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexandre, “Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs,” Phys. Rev. Lett. 55, 2074–2077 (1985).
[Crossref]
[PubMed]
J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[Crossref]
[PubMed]
S. Chang, Y. Huang, G. Chang, and S. T. Ho, “THz all-optical shutter based on semiconductor transparency switching by two optical p-pulses,” OSA Annual Meeting, TuY3, Long Beach, CA, 2001.
S. Chang, Y. Huang, G. Chang, and S. T. Ho, “THz all-optical shutter based on semiconductor transparency switching by two optical p-pulses,” OSA Annual Meeting, TuY3, Long Beach, CA, 2001.
D. Y. Chu, M. K. Chin, S. Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs Quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).
[Crossref]
D. Y. Chu, M. K. Chin, S. Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs Quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).
[Crossref]
W. W. Chow, S. Koch, and M. Sargent III, Semiconductor-Laser Physics, (Springer Verlag, Berlin, 1994).
[Crossref]
J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[Crossref]
[PubMed]
D. Y. Chu, M. K. Chin, S. Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs Quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).
[Crossref]
S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[Crossref]
L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits, (Wiley, John & Sons.1995).
L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits, (Wiley, John & Sons.1995).
S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[Crossref]
S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[Crossref]
S. D. Gedney, “An anisotropic perfectly matched Layer-Absorbing Medium for the truncation of FDTD Lattice,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996), and references therein.
[Crossref]
R. F. Kazarinov, C. H. Henry, and R. A. Logan, “Longitudinal mode self-stabilization in semicondcutor lasers,” J. Appl. Phys. 53, 4631–4644 (1982).
[Crossref]
W. Fang, J. Y. Xu, A. Yamilov, H. Cao, Y. Ma, S. T. Ho, and G. S. Solomon, “Large nhancement of spontaneous emission rates of InAs quantum dots in GaAs microdisks,” Opt. Lett. 27, 948–950 (2002).
[Crossref]
J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[Crossref]
[PubMed]
D. Y. Chu, M. K. Chin, S. Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs Quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).
[Crossref]
S. T. Ho and P. Kumar, “Quantum optics in a dielectric: Macroscopic electromagnetic-field and medium operators for a linear dispersive Lossy medium-A microscopic derivation of the operators and their commutation relations,” J. Opt. Soc. Am. B 10, 1620–1636 (1993).
[Crossref]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Quantum theory of nondegenerate multiwave mixing (I) - General formulation,” Phys. Rev. A 37, 2017–2032 (1988).
[Crossref]
[PubMed]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Vector-field quantum model of degenerate four-wave mixing,” Phys. Rev. A 34, 293–303 (July 1986).
[Crossref]
[PubMed]
S. T. Ho, research notes, 1998–1999.
Y. Huang and S. T. Ho, “A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices,” 2005 Technical Digest of the Annual Conference on Lasers and Electro-Optics, Paper QTuD7, Baltimore, MD, May 2005.
S. Chang, Y. Huang, G. Chang, and S. T. Ho, “THz all-optical shutter based on semiconductor transparency switching by two optical p-pulses,” OSA Annual Meeting, TuY3, Long Beach, CA, 2001.
Y. Huang, “Simulation of semiconductor material using FDTD method,” Master Thesis, Northwestern University, June 2002. https://depot.northwestern.edu/yhu234/publish/YYHMS.pdf
S. Chang, Y. Huang, G. Chang, and S. T. Ho, “THz all-optical shutter based on semiconductor transparency switching by two optical p-pulses,” OSA Annual Meeting, TuY3, Long Beach, CA, 2001.
Y. Huang and S. T. Ho, “A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices,” 2005 Technical Digest of the Annual Conference on Lasers and Electro-Optics, Paper QTuD7, Baltimore, MD, May 2005.
Y. Huang, “Simulation of semiconductor structure using FDTD method”, presented to the Physics Department at Northwestern University, 15 Jan. 2002.
J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexandre, “Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs,” Phys. Rev. Lett. 55, 2074–2077 (1985).
[Crossref]
[PubMed]
R. F. Kazarinov, C. H. Henry, and R. A. Logan, “Longitudinal mode self-stabilization in semicondcutor lasers,” J. Appl. Phys. 53, 4631–4644 (1982).
[Crossref]
W. W. Chow, S. Koch, and M. Sargent III, Semiconductor-Laser Physics, (Springer Verlag, Berlin, 1994).
[Crossref]
S. T. Ho and P. Kumar, “Quantum optics in a dielectric: Macroscopic electromagnetic-field and medium operators for a linear dispersive Lossy medium-A microscopic derivation of the operators and their commutation relations,” J. Opt. Soc. Am. B 10, 1620–1636 (1993).
[Crossref]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Quantum theory of nondegenerate multiwave mixing (I) - General formulation,” Phys. Rev. A 37, 2017–2032 (1988).
[Crossref]
[PubMed]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Vector-field quantum model of degenerate four-wave mixing,” Phys. Rev. A 34, 293–303 (July 1986).
[Crossref]
[PubMed]
R. F. Kazarinov, C. H. Henry, and R. A. Logan, “Longitudinal mode self-stabilization in semicondcutor lasers,” J. Appl. Phys. 53, 4631–4644 (1982).
[Crossref]
W. H. Louisell, Quantum Statistical Properties of Radiation, (Wiley-Interscience, New York, 1990).
S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[Crossref]
J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexandre, “Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs,” Phys. Rev. Lett. 55, 2074–2077 (1985).
[Crossref]
[PubMed]
S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[Crossref]
M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997), and references therein.
[Crossref]
A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
[Crossref]
M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997), and references therein.
[Crossref]
J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexandre, “Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs,” Phys. Rev. Lett. 55, 2074–2077 (1985).
[Crossref]
[PubMed]
S. Park, “Development of InGaAsP/InP single-mode lasers using microring resonators for photonic integrated circuits,” PhD Thesis, Northwestern University, Dec. 2000, and references therein.
J. Piprek, Optoelectronic Devices: Advanced Simulation and Analysis, (Springer Verlag, New York, 2005).
[Crossref]
J. J. Sakurai, Advanced Quantum Mechanics, (Addison Wesley,1967).
W. W. Chow, S. Koch, and M. Sargent III, Semiconductor-Laser Physics, (Springer Verlag, Berlin, 1994).
[Crossref]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Quantum theory of nondegenerate multiwave mixing (I) - General formulation,” Phys. Rev. A 37, 2017–2032 (1988).
[Crossref]
[PubMed]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Vector-field quantum model of degenerate four-wave mixing,” Phys. Rev. A 34, 293–303 (July 1986).
[Crossref]
[PubMed]
M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997), and references therein.
[Crossref]
J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[Crossref]
[PubMed]
J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[Crossref]
[PubMed]
J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[Crossref]
[PubMed]
D. Y. Chu, M. K. Chin, S. Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs Quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in Isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]
A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
[Crossref]
J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[Crossref]
[PubMed]
S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[Crossref]
M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guid. Wave Lett. 7, 121–123 (1997), and references therein.
[Crossref]
D. Y. Chu, M. K. Chin, S. Z. Xu, T. Y. Chang, and S. T. Ho, “1.5 μm InGaAs/InAlGaAs Quantum-well microdisk lasers,” IEEE Photonics Technol. Lett. 5, 1353–1355 (1993).
[Crossref]
A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in Isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]
S. D. Gedney, “An anisotropic perfectly matched Layer-Absorbing Medium for the truncation of FDTD Lattice,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996), and references therein.
[Crossref]
R. F. Kazarinov, C. H. Henry, and R. A. Logan, “Longitudinal mode self-stabilization in semicondcutor lasers,” J. Appl. Phys. 53, 4631–4644 (1982).
[Crossref]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Quantum theory of nondegenerate multiwave mixing (I) - General formulation,” Phys. Rev. A 37, 2017–2032 (1988).
[Crossref]
[PubMed]
S. T. Ho, P. Kumar, and J. H. Shapiro, “Vector-field quantum model of degenerate four-wave mixing,” Phys. Rev. A 34, 293–303 (July 1986).
[Crossref]
[PubMed]
J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexandre, “Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs,” Phys. Rev. Lett. 55, 2074–2077 (1985).
[Crossref]
[PubMed]
J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[Crossref]
[PubMed]
J. J. Sakurai, Advanced Quantum Mechanics, (Addison Wesley,1967).
ĉsj(t) in semiconductor corresponds to the spatially localized operatorĉsj(t)≡ĉs(rnj,t)=∑kakĉkeik·r.
W. H. Louisell, Quantum Statistical Properties of Radiation, (Wiley-Interscience, New York, 1990).
For example, if three upper levels can decay to a single ground level, then each upper level will be associated with a transition dipole so that the total number of dipoles involved will be three, which is equal to the number of the upper levels.
L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits, (Wiley, John & Sons.1995).
Y. Huang, “Simulation of semiconductor material using FDTD method,” Master Thesis, Northwestern University, June 2002. https://depot.northwestern.edu/yhu234/publish/YYHMS.pdf
S. Chang, Y. Huang, G. Chang, and S. T. Ho, “THz all-optical shutter based on semiconductor transparency switching by two optical p-pulses,” OSA Annual Meeting, TuY3, Long Beach, CA, 2001.
S. T. Ho, research notes, 1998–1999.
Y. Huang, “Simulation of semiconductor structure using FDTD method”, presented to the Physics Department at Northwestern University, 15 Jan. 2002.
W. W. Chow, S. Koch, and M. Sargent III, Semiconductor-Laser Physics, (Springer Verlag, Berlin, 1994).
[Crossref]
J. Piprek, Optoelectronic Devices: Advanced Simulation and Analysis, (Springer Verlag, New York, 2005).
[Crossref]
S. Park, “Development of InGaAsP/InP single-mode lasers using microring resonators for photonic integrated circuits,” PhD Thesis, Northwestern University, Dec. 2000, and references therein.
Y. Huang and S. T. Ho, “A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices,” 2005 Technical Digest of the Annual Conference on Lasers and Electro-Optics, Paper QTuD7, Baltimore, MD, May 2005.