Abstract

Here we give theoretical as well as experimental evidence for wavelength dependent super-refraction phenomena in waveguide coupled superprisms based on polymer woodpile structures. The photonic crystals were fabricated by means of the two-photon polymerization technique and have a partial band gap at near infrared wavelengths. To visualize the superprism effect the light propagating inside the woodpile structure was imaged using a CCD for a continuous range of wavelengths slightly above the band gap frequency. We were able to demonstrate a change of propagation direction from +50° (positive refraction) to -10° (negative refraction) with respect to the crystal surface normal for a wavelength range between 860 nm and 960 nm. Our results show the great potential of these low refractive index three-dimensional crystals, fabricated in a very fast and single-step process, to serve directly as functional micro-optical devices in the near infrared wavelength regime.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid state-physics and lectronics," Phys. Rev. Lett. 58,2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58,2486-2489 (1987).
    [CrossRef] [PubMed]
  3. S. Fan, P.R. Villeneuve, R.D. Meade, and J.D. Joannopoulos, "Design of three-dimensional photonic crystals at submicron lengthscales," Appl. Phys. Lett. 65,1466-1468 (1994).
    [CrossRef]
  4. E. Yablonovitch, T.J. Gmitter, and K.M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295-2298 (1991).
    [CrossRef] [PubMed]
  5. T. Prasad, V. Colvin, and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys. Rev. B 67,1651031-1651037 (2003).
    [CrossRef]
  6. J. Serbin, and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
    [CrossRef]
  7. J. Shin, S. Fan, "Conditions for self-collimation in three-dimensional photonic crystals," Opt. Lett. 30,2397-2399 (2005).
    [CrossRef] [PubMed]
  8. Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95,1-4 (2005).
    [CrossRef]
  9. S. G. Johnson, J. D. Joannopoulos, MIT Photonic Bands software, http://ab-initio.mit.edu/mpb, 1999.
  10. M. Straub, and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt.Lett. 27,1824-1826 (2002).
    [CrossRef]
  11. J. Serbin, A. Egbert, A. Ostendorf, and B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28,301-303 (2003).
    [CrossRef] [PubMed]
  12. J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
    [CrossRef] [PubMed]
  13. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
    [CrossRef]
  14. U. Streppel, P. Dannberg, C. Waechter, A. Braeuer, and R. Kowarschik, "Formation of micro-optical structures by self-writing processes in photosensitive polymers," Appl. Opt. 42,3570-3579 (2003)
    [CrossRef] [PubMed]
  15. J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85,354-356 (2004).
    [CrossRef]

2006 (1)

J. Serbin, and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

2005 (2)

J. Shin, S. Fan, "Conditions for self-collimation in three-dimensional photonic crystals," Opt. Lett. 30,2397-2399 (2005).
[CrossRef] [PubMed]

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95,1-4 (2005).
[CrossRef]

2004 (2)

J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
[CrossRef] [PubMed]

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85,354-356 (2004).
[CrossRef]

2003 (3)

2002 (1)

M. Straub, and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt.Lett. 27,1824-1826 (2002).
[CrossRef]

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

1994 (1)

S. Fan, P.R. Villeneuve, R.D. Meade, and J.D. Joannopoulos, "Design of three-dimensional photonic crystals at submicron lengthscales," Appl. Phys. Lett. 65,1466-1468 (1994).
[CrossRef]

1991 (1)

E. Yablonovitch, T.J. Gmitter, and K.M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295-2298 (1991).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid state-physics and lectronics," Phys. Rev. Lett. 58,2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58,2486-2489 (1987).
[CrossRef] [PubMed]

Baumberg, J. J.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85,354-356 (2004).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Braeuer, A.

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Charlton, M. D. C.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85,354-356 (2004).
[CrossRef]

Chichkov, B.

Chichkov, B. N.

Colvin, V.

T. Prasad, V. Colvin, and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys. Rev. B 67,1651031-1651037 (2003).
[CrossRef]

Cronauer, C.

Dannberg, P.

Domann, G.

Egbert, A.

Fan, S.

J. Shin, S. Fan, "Conditions for self-collimation in three-dimensional photonic crystals," Opt. Lett. 30,2397-2399 (2005).
[CrossRef] [PubMed]

S. Fan, P.R. Villeneuve, R.D. Meade, and J.D. Joannopoulos, "Design of three-dimensional photonic crystals at submicron lengthscales," Appl. Phys. Lett. 65,1466-1468 (1994).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Fröhlich, L.

Gmitter, T.J.

E. Yablonovitch, T.J. Gmitter, and K.M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295-2298 (1991).
[CrossRef] [PubMed]

Gu, M.

J. Serbin, and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

M. Straub, and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt.Lett. 27,1824-1826 (2002).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Houbertz, R.

Joannopoulos, J.D.

S. Fan, P.R. Villeneuve, R.D. Meade, and J.D. Joannopoulos, "Design of three-dimensional photonic crystals at submicron lengthscales," Appl. Phys. Lett. 65,1466-1468 (1994).
[CrossRef]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58,2486-2489 (1987).
[CrossRef] [PubMed]

Kowarschik, R.

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Leung, K.M.

E. Yablonovitch, T.J. Gmitter, and K.M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295-2298 (1991).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Lu, Z.

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95,1-4 (2005).
[CrossRef]

Meade, R.D.

S. Fan, P.R. Villeneuve, R.D. Meade, and J.D. Joannopoulos, "Design of three-dimensional photonic crystals at submicron lengthscales," Appl. Phys. Lett. 65,1466-1468 (1994).
[CrossRef]

Mittleman, D.

T. Prasad, V. Colvin, and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys. Rev. B 67,1651031-1651037 (2003).
[CrossRef]

Murakowski, J.A.

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95,1-4 (2005).
[CrossRef]

Netti, M. C.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85,354-356 (2004).
[CrossRef]

Ostendorf, A.

Ovsianikov, A.

Parker, G. J.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85,354-356 (2004).
[CrossRef]

Perney, N. M. B.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85,354-356 (2004).
[CrossRef]

Popall, M.

Prasad, T.

T. Prasad, V. Colvin, and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys. Rev. B 67,1651031-1651037 (2003).
[CrossRef]

Prather, D.W.

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95,1-4 (2005).
[CrossRef]

Schneider, G.J.

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95,1-4 (2005).
[CrossRef]

Schuetz, C.A.

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95,1-4 (2005).
[CrossRef]

Schulz, J.

Serbin, J.

Shi, S.

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95,1-4 (2005).
[CrossRef]

Shin, J.

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Straub, M.

M. Straub, and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt.Lett. 27,1824-1826 (2002).
[CrossRef]

Streppel, U.

Villeneuve, P.R.

S. Fan, P.R. Villeneuve, R.D. Meade, and J.D. Joannopoulos, "Design of three-dimensional photonic crystals at submicron lengthscales," Appl. Phys. Lett. 65,1466-1468 (1994).
[CrossRef]

Waechter, C.

Yablonovitch, E.

E. Yablonovitch, T.J. Gmitter, and K.M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295-2298 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid state-physics and lectronics," Phys. Rev. Lett. 58,2059-2062 (1987).
[CrossRef] [PubMed]

Zoorob, M.

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85,354-356 (2004).
[CrossRef]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Adv. Mater. (1)

J. Serbin, and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85,354-356 (2004).
[CrossRef]

S. Fan, P.R. Villeneuve, R.D. Meade, and J.D. Joannopoulos, "Design of three-dimensional photonic crystals at submicron lengthscales," Appl. Phys. Lett. 65,1466-1468 (1994).
[CrossRef]

Nature (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt.Lett. (1)

M. Straub, and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt.Lett. 27,1824-1826 (2002).
[CrossRef]

Phys. Rev. B (1)

T. Prasad, V. Colvin, and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys. Rev. B 67,1651031-1651037 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95,1-4 (2005).
[CrossRef]

E. Yablonovitch, T.J. Gmitter, and K.M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295-2298 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid state-physics and lectronics," Phys. Rev. Lett. 58,2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58,2486-2489 (1987).
[CrossRef] [PubMed]

Other (1)

S. G. Johnson, J. D. Joannopoulos, MIT Photonic Bands software, http://ab-initio.mit.edu/mpb, 1999.

Supplementary Material (1)

» Media 1: MOV (962 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images of a waveguide-coupled woodpile structure fabricated by means of two-photon polymerization. (a) Overview of the photonic crystal with a massive frame to support the fragile structure and the tapered waveguide used to couple light into the photonic crystal. (b) Detailed view of the waveguide structure. (c) and (d) Details of the woodpile structure.

Fig. 2.
Fig. 2.

Microscope images of the waveguide coupled woodpile structure (size: 85 μm × 45 μm) and the light propagating inside the photonic crystal. The red dotted line indicates the surface normal and the red arrows show the direction of propagation. (a) λ=960 nm, (b) λ=930 nm, (a) λ=880 nm. The full tuning range (860 nm to 960 nm) can be seen in the movie sp.mov (file size: 0.96 MB).

Fig. 3.
Fig. 3.

(a) Calculated iso-energy surface (IES) at a normalized frequency of 0.655 (4th band) for a woodpile structure having a contrast in refractive indices of n=1.552 [14]. (b) Iso-energy contour showing an intersection of the IES from (a) with the plane k z = 0. The blue contours indicate the dispersion curve for air and the polymer waveguide, the red contour shows the dispersion curve for the photonic crystal structure.

Fig. 4.
Fig. 4.

Measured angles of propagation for light at different wavelengths (red circles) together with the calculated data (black line and squares).

Metrics