Abstract

Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0×104, sufficient for proof of principle demonstrations in the quantum regime.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Song, and S. Noda, T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300,1537 (2003).
    [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  3. H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, J-S. Kim, "Nondegenerate monopole-mode two-dimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
    [CrossRef]
  4. K. Srinivasan, and O. Painter, "Fourier space design of high-Q cavities in standard and compresses hexagonal lattice photonic crystals," Opt. Express 11, 579-593 (2003).
    [CrossRef] [PubMed]
  5. O. Painter and K. Srinivasan, "Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis," Phys. Rev. B 68, 035110 (2003).
    [CrossRef]
  6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
    [CrossRef] [PubMed]
  7. Z. Zhang, and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004).
    [CrossRef] [PubMed]
  8. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
    [CrossRef]
  9. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
    [CrossRef]
  10. H. Mabuchi, and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372 -1377 (2002).
    [CrossRef] [PubMed]
  11. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
    [CrossRef]
  12. S. Y. Kilin, "Entangled states and nanoojects in quantum optics," Opt. and Spectr. 94, 709-710 (2003).
  13. E. van Oort, N.B. Manson and M. Glasbeek, "Optically detected spin coherence of the diamond N-V centre in its triplet ground state," J. Phys. C 21, 4385-4391 (1988).
    [CrossRef]
  14. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett 92,076401 (2004).
    [CrossRef] [PubMed]
  15. F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004).
    [CrossRef] [PubMed]
  16. M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, "Solid-state quantum computing using spectral holes," Phys. Rev. A 66,032301 (2002).
    [CrossRef]
  17. Y. L. Lim, A. Beige, and C. Kwek, "Repeat-until-success linear optics distributed quantum computing," Phys. Rev. Lett 95, 030505 (2005).
    [CrossRef] [PubMed]
  18. S. D. Barrett, and P. Kok, "Efficient high-fidelity quantum computation using matter qubits and linear optics," Phys. Rev. A 71, 060310 (2005).
    [CrossRef]
  19. A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A. 73, 013818 (2006).
    [CrossRef]
  20. P. Barclay, O. Painter and K. Srinivasan, "Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
  21. J. Salzman, S. Prawer, and D. Jamieson, Photonic crystal devices and systems in diamond, Provisional Patent, CCID 131000480.
  22. D. F. Edwards, and H. R. Philipp, Handbook of optical constants of solids, (Academic Press, 1985).
  23. M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: determing resonant frequencies and quality factor accurately," Microw. & Opt. Techn. Lett. 45, 381-385 (2005).
    [CrossRef]
  24. R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," JOSA B 17, 629-633 (2000).
    [CrossRef]
  25. H-Y Ryu, M. Notomi, and Y-H Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett 83, 4294-4296 (2003).
    [CrossRef]
  26. B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
    [CrossRef]

2006 (1)

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A. 73, 013818 (2006).
[CrossRef]

2005 (7)

M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: determing resonant frequencies and quality factor accurately," Microw. & Opt. Techn. Lett. 45, 381-385 (2005).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Y. L. Lim, A. Beige, and C. Kwek, "Repeat-until-success linear optics distributed quantum computing," Phys. Rev. Lett 95, 030505 (2005).
[CrossRef] [PubMed]

S. D. Barrett, and P. Kok, "Efficient high-fidelity quantum computation using matter qubits and linear optics," Phys. Rev. A 71, 060310 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

P. Barclay, O. Painter and K. Srinivasan, "Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

2004 (4)

Z. Zhang, and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett 92,076401 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

2003 (6)

S. Y. Kilin, "Entangled states and nanoojects in quantum optics," Opt. and Spectr. 94, 709-710 (2003).

H-Y Ryu, M. Notomi, and Y-H Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett 83, 4294-4296 (2003).
[CrossRef]

B. S. Song, and S. Noda, T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300,1537 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

O. Painter and K. Srinivasan, "Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis," Phys. Rev. B 68, 035110 (2003).
[CrossRef]

K. Srinivasan, and O. Painter, "Fourier space design of high-Q cavities in standard and compresses hexagonal lattice photonic crystals," Opt. Express 11, 579-593 (2003).
[CrossRef] [PubMed]

2002 (2)

H. Mabuchi, and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372 -1377 (2002).
[CrossRef] [PubMed]

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, "Solid-state quantum computing using spectral holes," Phys. Rev. A 66,032301 (2002).
[CrossRef]

2001 (2)

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, J-S. Kim, "Nondegenerate monopole-mode two-dimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

2000 (1)

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," JOSA B 17, 629-633 (2000).
[CrossRef]

1988 (1)

E. van Oort, N.B. Manson and M. Glasbeek, "Optically detected spin coherence of the diamond N-V centre in its triplet ground state," J. Phys. C 21, 4385-4391 (1988).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

B. S. Song, and S. Noda, T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300,1537 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Barclay, P.

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Barrett, S. D.

S. D. Barrett, and P. Kok, "Efficient high-fidelity quantum computation using matter qubits and linear optics," Phys. Rev. A 71, 060310 (2005).
[CrossRef]

Beige, A.

Y. L. Lim, A. Beige, and C. Kwek, "Repeat-until-success linear optics distributed quantum computing," Phys. Rev. Lett 95, 030505 (2005).
[CrossRef] [PubMed]

Bhatia, P.S.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, "Solid-state quantum computing using spectral holes," Phys. Rev. A 66,032301 (2002).
[CrossRef]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Christenson, C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Craig, A. E.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, "Solid-state quantum computing using spectral holes," Phys. Rev. A 66,032301 (2002).
[CrossRef]

Deppe, D. G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Doherty, A. C.

H. Mabuchi, and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372 -1377 (2002).
[CrossRef] [PubMed]

Domham, M.

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Gaebel, T.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett 92,076401 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Gibbs, H. M.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Glasbeek, M.

E. van Oort, N.B. Manson and M. Glasbeek, "Optically detected spin coherence of the diamond N-V centre in its triplet ground state," J. Phys. C 21, 4385-4391 (1988).
[CrossRef]

Greentree, A. D.

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A. 73, 013818 (2006).
[CrossRef]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett 92,076401 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Hemmer, P.R.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, "Solid-state quantum computing using spectral holes," Phys. Rev. A 66,032301 (2002).
[CrossRef]

Hendrickson, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Hollenberg, L. C. L.

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A. 73, 013818 (2006).
[CrossRef]

Huh, J.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, J-S. Kim, "Nondegenerate monopole-mode two-dimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Hwang, J-K.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, J-S. Kim, "Nondegenerate monopole-mode two-dimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Jelezko, F.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett 92,076401 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Khitrova, G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Kilin, S. Y.

S. Y. Kilin, "Entangled states and nanoojects in quantum optics," Opt. and Spectr. 94, 709-710 (2003).

Kitzke, B.

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," JOSA B 17, 629-633 (2000).
[CrossRef]

Kok, P.

S. D. Barrett, and P. Kok, "Efficient high-fidelity quantum computation using matter qubits and linear optics," Phys. Rev. A 71, 060310 (2005).
[CrossRef]

Kwek, C.

Y. L. Lim, A. Beige, and C. Kwek, "Repeat-until-success linear optics distributed quantum computing," Phys. Rev. Lett 95, 030505 (2005).
[CrossRef] [PubMed]

Lam, D.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Lee, R. K.

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," JOSA B 17, 629-633 (2000).
[CrossRef]

Lee, Y-H

H-Y Ryu, M. Notomi, and Y-H Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett 83, 4294-4296 (2003).
[CrossRef]

Lim, Y. L.

Y. L. Lim, A. Beige, and C. Kwek, "Repeat-until-success linear optics distributed quantum computing," Phys. Rev. Lett 95, 030505 (2005).
[CrossRef] [PubMed]

Lloyd, S.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, "Solid-state quantum computing using spectral holes," Phys. Rev. A 66,032301 (2002).
[CrossRef]

Loncar, M.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Mabuchi, H.

H. Mabuchi, and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372 -1377 (2002).
[CrossRef] [PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Manson, N.B.

E. van Oort, N.B. Manson and M. Glasbeek, "Optically detected spin coherence of the diamond N-V centre in its triplet ground state," J. Phys. C 21, 4385-4391 (1988).
[CrossRef]

Mosor, S.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Noda, S.

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

B. S. Song, and S. Noda, T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300,1537 (2003).
[CrossRef] [PubMed]

Notomi, M.

H-Y Ryu, M. Notomi, and Y-H Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett 83, 4294-4296 (2003).
[CrossRef]

Painter, O.

P. Barclay, O. Painter and K. Srinivasan, "Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

O. Painter and K. Srinivasan, "Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis," Phys. Rev. B 68, 035110 (2003).
[CrossRef]

K. Srinivasan, and O. Painter, "Fourier space design of high-Q cavities in standard and compresses hexagonal lattice photonic crystals," Opt. Express 11, 579-593 (2003).
[CrossRef] [PubMed]

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," JOSA B 17, 629-633 (2000).
[CrossRef]

Park, H-G.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, J-S. Kim, "Nondegenerate monopole-mode two-dimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Popa, I.

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett 92,076401 (2004).
[CrossRef] [PubMed]

Prawer, S.

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A. 73, 013818 (2006).
[CrossRef]

Qiu, M.

M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: determing resonant frequencies and quality factor accurately," Microw. & Opt. Techn. Lett. 45, 381-385 (2005).
[CrossRef]

Z. Zhang, and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004).
[CrossRef] [PubMed]

Richards, B. C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Ryu, H-Y

H-Y Ryu, M. Notomi, and Y-H Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett 83, 4294-4296 (2003).
[CrossRef]

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, J-S. Kim, "Nondegenerate monopole-mode two-dimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Salzman, J.

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A. 73, 013818 (2006).
[CrossRef]

Scherer, A.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Schrerer, A.

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," JOSA B 17, 629-633 (2000).
[CrossRef]

Shahriar, M. S.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, "Solid-state quantum computing using spectral holes," Phys. Rev. A 66,032301 (2002).
[CrossRef]

Shchekin, O. B.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Song, B. S.

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

B. S. Song, and S. Noda, T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300,1537 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

P. Barclay, O. Painter and K. Srinivasan, "Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

O. Painter and K. Srinivasan, "Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis," Phys. Rev. B 68, 035110 (2003).
[CrossRef]

K. Srinivasan, and O. Painter, "Fourier space design of high-Q cavities in standard and compresses hexagonal lattice photonic crystals," Opt. Express 11, 579-593 (2003).
[CrossRef] [PubMed]

Sweet, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

van Oort, E.

E. van Oort, N.B. Manson and M. Glasbeek, "Optically detected spin coherence of the diamond N-V centre in its triplet ground state," J. Phys. C 21, 4385-4391 (1988).
[CrossRef]

Vuckovic, J.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Wrachtrup, J.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett 92,076401 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Yariv, A.

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," JOSA B 17, 629-633 (2000).
[CrossRef]

Yoshie, T.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Zhang, Z.

Appl. Phys. Lett (1)

H-Y Ryu, M. Notomi, and Y-H Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett 83, 4294-4296 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, J-S. Kim, "Nondegenerate monopole-mode two-dimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

J. Phys. C (1)

E. van Oort, N.B. Manson and M. Glasbeek, "Optically detected spin coherence of the diamond N-V centre in its triplet ground state," J. Phys. C 21, 4385-4391 (1988).
[CrossRef]

JOSA B (1)

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," JOSA B 17, 629-633 (2000).
[CrossRef]

Microw. & Opt. Techn. Lett. (1)

M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: determing resonant frequencies and quality factor accurately," Microw. & Opt. Techn. Lett. 45, 381-385 (2005).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Nature Mater. (1)

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Opt. and Spectr. (1)

S. Y. Kilin, "Entangled states and nanoojects in quantum optics," Opt. and Spectr. 94, 709-710 (2003).

Opt. Express (4)

Phys. Rev. A (2)

S. D. Barrett, and P. Kok, "Efficient high-fidelity quantum computation using matter qubits and linear optics," Phys. Rev. A 71, 060310 (2005).
[CrossRef]

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, "Solid-state quantum computing using spectral holes," Phys. Rev. A 66,032301 (2002).
[CrossRef]

Phys. Rev. A. (1)

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A. 73, 013818 (2006).
[CrossRef]

Phys. Rev. B (3)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

O. Painter and K. Srinivasan, "Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis," Phys. Rev. B 68, 035110 (2003).
[CrossRef]

Phys. Rev. E (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Phys. Rev. Lett (2)

Y. L. Lim, A. Beige, and C. Kwek, "Repeat-until-success linear optics distributed quantum computing," Phys. Rev. Lett 95, 030505 (2005).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett 92,076401 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004).
[CrossRef] [PubMed]

Science (2)

H. Mabuchi, and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372 -1377 (2002).
[CrossRef] [PubMed]

B. S. Song, and S. Noda, T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300,1537 (2003).
[CrossRef] [PubMed]

Other (2)

J. Salzman, S. Prawer, and D. Jamieson, Photonic crystal devices and systems in diamond, Provisional Patent, CCID 131000480.

D. F. Edwards, and H. R. Philipp, Handbook of optical constants of solids, (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of bulk photonic crystal slab (PCS) and modifications of the geometry around the cavity described (b) by Zhang et al in Ref [7] and (c) by Song et al in Ref. [6].

Fig. 2.
Fig. 2.

Lowest photonic band gap as a function of the relative hole radius of even parity fields for silicon (grey) and diamond (black).

Fig. 3.
Fig. 3.

(a) Quality factor of the diamond PCS as a function of radius of the holes above and below the cavity with fixed displacement d=0.21a; and (b) electric field amplitude E x of the resonant mode in the center of the slab. The coordinate axes are defined in Fig. 1(a).

Tables (1)

Tables Icon

Table 1. Numerical parameters in the calculations

Metrics