Abstract

Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0×104, sufficient for proof of principle demonstrations in the quantum regime.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
    [Crossref] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  3. H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
    [Crossref]
  4. K. Srinivasan and O. Painter, “Fourier space design of high-Q cavities in standard and compresses hexagonal lattice photonic crystals,” Opt. Express 11, 579–593 (2003).
    [Crossref] [PubMed]
  5. O. Painter and K. Srinivasan, “Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis,” Phys. Rev. B 68, 035110 (2003).
    [Crossref]
  6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
    [Crossref] [PubMed]
  7. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004).
    [Crossref] [PubMed]
  8. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
    [Crossref]
  9. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306® (2004).
    [Crossref]
  10. H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
    [Crossref] [PubMed]
  11. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
    [Crossref]
  12. S. Y. Kilin, “Entangled states and nanoojects in quantum optics,” Opt. and Spectr. 94, 709–710 (2003).
  13. E. van Oort, N.B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond N-V centre in its triplet ground state,” J. Phys. C 21, 4385–4391 (1988).
    [Crossref]
  14. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett 92, 076401 (2004).
    [Crossref] [PubMed]
  15. F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, , “Observation of oherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
    [Crossref] [PubMed]
  16. M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).
    [Crossref]
  17. Y. L. Lim, A. Beige, and C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett 95, 030505 (2005).
    [Crossref] [PubMed]
  18. S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
    [Crossref]
  19. A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A. 73, 013818 (2006).
    [Crossref]
  20. P. Barclay, O. Painter, and K. Srinivasan, “Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,”  13, 801–820 (2005).
  21. J. Salzman, S. Prawer, and D. Jamieson, Photonic crystal devices and systems in diamond, Provisional Patent, CCID 131000480.
  22. D. F. Edwards and H. R. Philipp, Handbook of optical constants of solids, (Academic Press,1985).
  23. M. Qiu, “Micro-cavities in silicon-on-insulator photonic crystal slabs: determing resonant frequencies and quality factor accurately,” Microw. … Opt. Techn. Lett. 45, 381–385 (2005).
    [Crossref]
  24. R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, “Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab,” JOSA B 17, 629–633 (2000).
    [Crossref]
  25. H-Y Ryu, M. Notomi, and Y-H Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett 83, 4294–4296 (2003).
    [Crossref]
  26. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
    [Crossref]

2006 (1)

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A. 73, 013818 (2006).
[Crossref]

2005 (7)

P. Barclay, O. Painter, and K. Srinivasan, “Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,”  13, 801–820 (2005).

M. Qiu, “Micro-cavities in silicon-on-insulator photonic crystal slabs: determing resonant frequencies and quality factor accurately,” Microw. … Opt. Techn. Lett. 45, 381–385 (2005).
[Crossref]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

Y. L. Lim, A. Beige, and C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett 95, 030505 (2005).
[Crossref] [PubMed]

S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[Crossref]

2004 (4)

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004).
[Crossref] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306® (2004).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett 92, 076401 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, , “Observation of oherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

2003 (6)

S. Y. Kilin, “Entangled states and nanoojects in quantum optics,” Opt. and Spectr. 94, 709–710 (2003).

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Fourier space design of high-Q cavities in standard and compresses hexagonal lattice photonic crystals,” Opt. Express 11, 579–593 (2003).
[Crossref] [PubMed]

O. Painter and K. Srinivasan, “Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis,” Phys. Rev. B 68, 035110 (2003).
[Crossref]

H-Y Ryu, M. Notomi, and Y-H Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett 83, 4294–4296 (2003).
[Crossref]

2002 (2)

H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).
[Crossref]

2001 (2)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[Crossref]

2000 (1)

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, “Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab,” JOSA B 17, 629–633 (2000).
[Crossref]

1988 (1)

E. van Oort, N.B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond N-V centre in its triplet ground state,” J. Phys. C 21, 4385–4391 (1988).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[Crossref] [PubMed]

Barclay, P.

P. Barclay, O. Painter, and K. Srinivasan, “Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,”  13, 801–820 (2005).

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306® (2004).
[Crossref]

Barrett, S. D.

S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
[Crossref]

Beige, A.

Y. L. Lim, A. Beige, and C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett 95, 030505 (2005).
[Crossref] [PubMed]

Bhatia, P.S.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).
[Crossref]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306® (2004).
[Crossref]

Christenson, C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Craig, A. E.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).
[Crossref]

Deppe, D. G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

Domham, M.

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, , “Observation of oherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Edwards, D. F.

D. F. Edwards and H. R. Philipp, Handbook of optical constants of solids, (Academic Press,1985).

Gaebel, T.

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, , “Observation of oherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett 92, 076401 (2004).
[Crossref] [PubMed]

Gibbs, H. M.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Glasbeek, M.

E. van Oort, N.B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond N-V centre in its triplet ground state,” J. Phys. C 21, 4385–4391 (1988).
[Crossref]

Greentree, A. D.

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A. 73, 013818 (2006).
[Crossref]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, , “Observation of oherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett 92, 076401 (2004).
[Crossref] [PubMed]

Hemmer, P.R.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).
[Crossref]

Hendrickson, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Hollenberg, L. C. L.

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A. 73, 013818 (2006).
[Crossref]

Huh, J.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[Crossref]

Hwang, J-K.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[Crossref]

Jamieson, D.

J. Salzman, S. Prawer, and D. Jamieson, Photonic crystal devices and systems in diamond, Provisional Patent, CCID 131000480.

Jelezko, F.

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, , “Observation of oherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett 92, 076401 (2004).
[Crossref] [PubMed]

Khitrova, G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Kilin, S. Y.

S. Y. Kilin, “Entangled states and nanoojects in quantum optics,” Opt. and Spectr. 94, 709–710 (2003).

Kim, J-S.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[Crossref]

Kitzke, B.

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, “Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab,” JOSA B 17, 629–633 (2000).
[Crossref]

Kok, P.

S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
[Crossref]

Kwek, C.

Y. L. Lim, A. Beige, and C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett 95, 030505 (2005).
[Crossref] [PubMed]

Lam, D.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Lee, R. K.

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, “Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab,” JOSA B 17, 629–633 (2000).
[Crossref]

Lee, Y-H

H-Y Ryu, M. Notomi, and Y-H Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett 83, 4294–4296 (2003).
[Crossref]

Lee, Y-h.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[Crossref]

Lim, Y. L.

Y. L. Lim, A. Beige, and C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett 95, 030505 (2005).
[Crossref] [PubMed]

Lloyd, S.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).
[Crossref]

Loncar, M.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

Mabuchi, H.

H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

Manson, N.B.

E. van Oort, N.B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond N-V centre in its triplet ground state,” J. Phys. C 21, 4385–4391 (1988).
[Crossref]

Mosor, S.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[Crossref] [PubMed]

Notomi, M.

H-Y Ryu, M. Notomi, and Y-H Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett 83, 4294–4296 (2003).
[Crossref]

Oort, E. van

E. van Oort, N.B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond N-V centre in its triplet ground state,” J. Phys. C 21, 4385–4391 (1988).
[Crossref]

Painter, O.

P. Barclay, O. Painter, and K. Srinivasan, “Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,”  13, 801–820 (2005).

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306® (2004).
[Crossref]

K. Srinivasan and O. Painter, “Fourier space design of high-Q cavities in standard and compresses hexagonal lattice photonic crystals,” Opt. Express 11, 579–593 (2003).
[Crossref] [PubMed]

O. Painter and K. Srinivasan, “Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis,” Phys. Rev. B 68, 035110 (2003).
[Crossref]

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, “Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab,” JOSA B 17, 629–633 (2000).
[Crossref]

Park, H-G.

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[Crossref]

Philipp, H. R.

D. F. Edwards and H. R. Philipp, Handbook of optical constants of solids, (Academic Press,1985).

Popa, I.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett 92, 076401 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, , “Observation of oherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Prawer, S.

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A. 73, 013818 (2006).
[Crossref]

J. Salzman, S. Prawer, and D. Jamieson, Photonic crystal devices and systems in diamond, Provisional Patent, CCID 131000480.

Qiu, M.

M. Qiu, “Micro-cavities in silicon-on-insulator photonic crystal slabs: determing resonant frequencies and quality factor accurately,” Microw. … Opt. Techn. Lett. 45, 381–385 (2005).
[Crossref]

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004).
[Crossref] [PubMed]

Richards, B. C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Ryu, H-Y

H-Y Ryu, M. Notomi, and Y-H Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett 83, 4294–4296 (2003).
[Crossref]

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[Crossref]

Salzman, J.

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A. 73, 013818 (2006).
[Crossref]

J. Salzman, S. Prawer, and D. Jamieson, Photonic crystal devices and systems in diamond, Provisional Patent, CCID 131000480.

Scherer, A.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

Schrerer, A.

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, “Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab,” JOSA B 17, 629–633 (2000).
[Crossref]

Shahriar, M. S.

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).
[Crossref]

Shchekin, O. B.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[Crossref]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Srinivasan, K.

P. Barclay, O. Painter, and K. Srinivasan, “Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,”  13, 801–820 (2005).

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306® (2004).
[Crossref]

O. Painter and K. Srinivasan, “Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis,” Phys. Rev. B 68, 035110 (2003).
[Crossref]

K. Srinivasan and O. Painter, “Fourier space design of high-Q cavities in standard and compresses hexagonal lattice photonic crystals,” Opt. Express 11, 579–593 (2003).
[Crossref] [PubMed]

Sweet, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Vuckovic, J.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

Wrachtrup, J.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett 92, 076401 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, , “Observation of oherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Yariv, A.

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, “Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab,” JOSA B 17, 629–633 (2000).
[Crossref]

Yoshie, T.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Zhang, Z.

Appl. Phys. Lett (1)

H-Y Ryu, M. Notomi, and Y-H Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett 83, 4294–4296 (2003).
[Crossref]

Appl. Phys. Lett. (1)

H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, and J-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001).
[Crossref]

J. Phys. C (1)

E. van Oort, N.B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond N-V centre in its triplet ground state,” J. Phys. C 21, 4385–4391 (1988).
[Crossref]

JOSA B (1)

R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, “Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab,” JOSA B 17, 629–633 (2000).
[Crossref]

Microw. … Opt. Techn. Lett. (1)

M. Qiu, “Micro-cavities in silicon-on-insulator photonic crystal slabs: determing resonant frequencies and quality factor accurately,” Microw. … Opt. Techn. Lett. 45, 381–385 (2005).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Nature Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005).
[Crossref]

Opt. and Spectr. (1)

S. Y. Kilin, “Entangled states and nanoojects in quantum optics,” Opt. and Spectr. 94, 709–710 (2003).

Opt. Express (3)

Phys. Rev. A (2)

S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
[Crossref]

M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).
[Crossref]

Phys. Rev. A. (1)

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A. 73, 013818 (2006).
[Crossref]

Phys. Rev. B (3)

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306® (2004).
[Crossref]

O. Painter and K. Srinivasan, “Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis,” Phys. Rev. B 68, 035110 (2003).
[Crossref]

Phys. Rev. E (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

Phys. Rev. Lett (2)

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett 92, 076401 (2004).
[Crossref] [PubMed]

Y. L. Lim, A. Beige, and C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett 95, 030505 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, , “Observation of oherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Science (2)

H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003).
[Crossref] [PubMed]

Other (3)

P. Barclay, O. Painter, and K. Srinivasan, “Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,”  13, 801–820 (2005).

J. Salzman, S. Prawer, and D. Jamieson, Photonic crystal devices and systems in diamond, Provisional Patent, CCID 131000480.

D. F. Edwards and H. R. Philipp, Handbook of optical constants of solids, (Academic Press,1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of bulk photonic crystal slab (PCS) and modifications of the geometry around the cavity described (b) by Zhang et al in Ref [7] and (c) by Song et al in Ref. [6].

Fig. 2.
Fig. 2.

Lowest photonic band gap as a function of the relative hole radius of even parity fields for silicon (grey) and diamond (black).

Fig. 3.
Fig. 3.

(a) Quality factor of the diamond PCS as a function of radius of the holes above and below the cavity with fixed displacement d=0.21a; and (b) electric field amplitude E x of the resonant mode in the center of the slab. The coordinate axes are defined in Fig. 1(a).

Tables (1)

Tables Icon

Table 1. Numerical parameters in the calculations

Metrics