Abstract

We present the design of a solid-core microstructured optical fiber with steering-wheel pattern of large holes in cladding as platform for evanescent-field sensing. Both geometry and optical properties of the fiber are numerical computed and analyzed in consideration of manufacturability using sol-gel casting technique as well as by evaluating a triangular lattice of holes with three rings in the design structure so that effective parameters can be established using effective step-index model. We predict less than 0.7 dB/m confinement loss at 850 nm, 29 %, 13.7 %, and 7.2 % of light intensity overlap in air holes at 1500 nm, 1000 nm, and 850 nm wavelength, respectively, in such fiber. With the low loss and high mode-field overlap, the steering-wheel structured fiber is well suited for evanescent-field sensing and detection of chemical and biological species.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. P. St. J. Russell, "Photonic crystal fibers," Science 299,358-362 (2003).
    [CrossRef] [PubMed]
  3. B. J. Eggleton, C. Kerbage, P. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9,698-713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698.
    [CrossRef] [PubMed]
  4. W. Jin, G. Stewart, and B. Culshaw, "Prospects for fiber-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39,42-47 (1997).
  5. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12,854-858 (2001).
    [CrossRef]
  6. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, and J. T. Folkenbeg, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  7. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12,4080-4087 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4080.
    [CrossRef] [PubMed]
  8. W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. R. K. Kumar, J. C. Knight, and P. St. J. Russell, "Finite-element analysis and experimental results for a microstructured fiber with enhanced hydrostatic pressure sensitivity," J. Lightwave Technol. 23,1227-1231 (2005).
    [CrossRef]
  9. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
    [CrossRef]
  10. R. Bise and D. J. Trevor, "Sol-gel derived microstructured fiber: fabrication and characterization," Presented at the Optical Fiber Communication Conference & Exposition and the National Fiber Optic Engineers Conference, Anaheim, USA, 6-11 Mar. 2005.
  11. M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, "Microstructured fibers for sensing applications," presented at the Conference of Optics East, Boston, USA, 23-26 Oct. 2005.
  12. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12,5082-5087 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5082.
    [CrossRef] [PubMed]
  13. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. L. Burdge, "Cladding-mode-resonances in air-silica microcstructed optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000).
    [CrossRef]
  14. M. Koshiba and K. Saitoh, "Structural dependence of effective area and mode field diameter for holey fibers," Opt. Express 11,1746-1756 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1746.
    [CrossRef] [PubMed]
  15. M. Koshiba and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253,95-98 (2005).
    [CrossRef]
  16. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10,341-348 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341.
    [PubMed]
  17. G. W. Schmid-Schonbein, "Biomechanics of microcirculatory blood perfusion," Annu. Rev. Biomed. Eng. 1,73-102 (1999).
    [CrossRef]

2005

2004

2003

2002

2001

B. J. Eggleton, C. Kerbage, P. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9,698-713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698.
[CrossRef] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12,854-858 (2001).
[CrossRef]

2000

1999

G. W. Schmid-Schonbein, "Biomechanics of microcirculatory blood perfusion," Annu. Rev. Biomed. Eng. 1,73-102 (1999).
[CrossRef]

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

1997

W. Jin, G. Stewart, and B. Culshaw, "Prospects for fiber-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39,42-47 (1997).

1996

Asimakis, S.

Atkin, D. M.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12,854-858 (2001).
[CrossRef]

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12,854-858 (2001).
[CrossRef]

Birks, T. A.

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12,854-858 (2001).
[CrossRef]

Broeng, J.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Burdge, G. L.

Culshaw, B.

W. Jin, G. Stewart, and B. Culshaw, "Prospects for fiber-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39,42-47 (1997).

Ebendorff-Heidepriem, H.

Eggleton, B. J.

Finazzi, V.

Folkenbeg, J. T.

Frampton, K.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12,854-858 (2001).
[CrossRef]

Hale, A.

Hansen, T. P.

Hoiby, P. E.

Jensen, J. B.

Jin, W.

W. Jin, G. Stewart, and B. Culshaw, "Prospects for fiber-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39,42-47 (1997).

Jones, J. D. C.

Kerbage, C.

Knight, J. C.

Koizumi, F.

Koshiba, M.

Kumar, V. V. R. K.

Ludvigsen, H.

MacPherson, W. N.

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Monro, T. M.

Moore, R. C.

Mortensen, N. A.

Nielsen, L. B.

Pedersen, L. H.

Petersen, J. C.

Petropoulos, P.

Richardson, D. J.

Rigg, E. J.

Ritari, T.

Russell, P. St. J.

Saitoh, K.

Schmid-Schonbein, G. W.

G. W. Schmid-Schonbein, "Biomechanics of microcirculatory blood perfusion," Annu. Rev. Biomed. Eng. 1,73-102 (1999).
[CrossRef]

Simonsen, H. R.

Sørensen, T.

Stewart, G.

W. Jin, G. Stewart, and B. Culshaw, "Prospects for fiber-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39,42-47 (1997).

Tuominen, J.

Westbrook, P.

Westbrook, P. S.

White, C. A.

Windeler, R. S.

Annu. Rev. Biomed. Eng.

G. W. Schmid-Schonbein, "Biomechanics of microcirculatory blood perfusion," Annu. Rev. Biomed. Eng. 1,73-102 (1999).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12,854-858 (2001).
[CrossRef]

Opt. Commun.

M. Koshiba and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253,95-98 (2005).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Opt. Lett.

Science

P. St. J. Russell, "Photonic crystal fibers," Science 299,358-362 (2003).
[CrossRef] [PubMed]

Sens. Actuators B

W. Jin, G. Stewart, and B. Culshaw, "Prospects for fiber-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39,42-47 (1997).

Other

R. Bise and D. J. Trevor, "Sol-gel derived microstructured fiber: fabrication and characterization," Presented at the Optical Fiber Communication Conference & Exposition and the National Fiber Optic Engineers Conference, Anaheim, USA, 6-11 Mar. 2005.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, "Microstructured fibers for sensing applications," presented at the Conference of Optics East, Boston, USA, 23-26 Oct. 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Design diagram of MOF with steering-wheel air-hole structure: (a) evaluation of MOF with 3-ring of holes and with holes like steering-wheel pattern into effective step index model; (b) cross-section of designed MOF with geometrical parameters.

Fig. 2.
Fig. 2.

SW-MOF numerical aperture (NA) and mode field diameter (MFD), dependent on and independent of wavelength, respectively.

Fig. 3.
Fig. 3.

(a) Near-field image of guided mode in MOF with steering-wheel air-hole cladding (λ = 850 nm); (b) confinement loss of MOF. The inset is the transferring of structure with hexagonal pattern and 3-ring of holes into quasi-steering-wheel.

Fig. 4.
Fig. 4.

(a) Intensity distribution of guided mode in SW-MOF. The left inset is far field pattern and the right inset is 3-D power profile of guiding mode; (b) Power percentage in air holes with different web thickness.

Fig. 5.
Fig. 5.

Prediction of macro-bending loss edge at short wavelength for SW-MOF with different bending radius. The inset is relationship between macro-bending radius and cut-off wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α confinement = λ· U 3 · W n eff · V 4 · K 1 2 ( W ) exp ( 2 bW a )
I = ( z ) I 0 exp ( z d )
d = λ 2 π n 11 2 sin 2 ( θ i ) n 2 2
Q = ( p 1 2 p 2 2 ) ·π· r 4 16 · l · η· p 0

Metrics