Abstract

This paper presents an optimized design of a dispersion compensating photonic crystal fiber (PCF) to achieve gain-flattened Raman performances over S-band using a single pump. Genetic algorithm interfaced with an efficient full-vectorial finite element modal solver based on curvilinear edge/nodal elements is used as an optimization tool for an accurate determination of PCF design parameters. The designed PCF shows high negative dispersion coefficient (-264 ps/nm/km to -1410 ps/nm/km) and negative dispersion slope, providing coarse dispersion compensation over the entire S-band. The module comprised of 1.45-km long optimized PCF exhibits ±0.46 dB gain ripples over 50 nm wide bandwidth and shows a very low double Rayleigh backscattering value (-59.8 dB). The proposed module can compensate for the dispersion accumulated in one span (80-km) of standard single mode fiber with a residual dispersion of ±700 ps/nm, ensuring its applicability for 10 Gb/s WDM networks. Additionally, the designed PCF remains single mode over the range of operating wavelengths.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namiki, Y. Ikegami, Y Shirasaka, and I. Oh-ishi, "Highly coupled high power pump laser modules," in Proc. Optical Amplifiers and Their Application (OAA 1993), Paper MD5, (1993).
  2. M. N. Islam, Raman Amplification for Telecommunications 1 and 2 (Springer-Verlag, New York, 2004).
  3. C. Headly and G. P. Agarwal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, New York, 2004).
  4. J. Bromage, "Raman amplification for fiber communication systems," J. Lightwave Technol. 22, 79-93 (2004).
    [CrossRef]
  5. K. Thyagarajan and C. Kakkar, "Novel fiber design for flat gain Raman amplification using single pump and dispersion compensation in S-band," J. Lightwave Technol. 22, 2279-2286 (2004).
    [CrossRef]
  6. Z. Yusoff, J.H. Lee, W. Belardi, T.M. Monro, P.C. Teh, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002).
    [CrossRef]
  7. C.J.S. de Matos, K. P. Hansen, and J. R. Taylor, "Experimental characterization of Raman gain efficiency of holey fiber," Electron. Lett. 39, 424-425 (2003).
    [CrossRef]
  8. M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri, "Modeling of photonic crystal fiber Raman amplifiers," J. Lightwave Technol. 22, 1707-1713 (2004).
    [CrossRef]
  9. S.K. Varshney, K. Saitoh, and M. Koshiba, "Raman performances of ultralow loss photonic crystal fiber amplifiers," in Proc. Lasers and Electro-Optics (IQEC/CLEO-PR 2005), paper no. CWE2-3, (2005).
  10. S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design of dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
    [CrossRef]
  11. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
    [CrossRef] [PubMed]
  12. S.K. Varshney, K. Saitoh, T. Fujisawa, and M. Koshiba, "Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: a leakage approach," in Proc. Optical Fiber Communication (OFC/NFOEC), paper no. OWD4, (2006).
  13. T.A. Birks, J.C. Knight, and P.St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  14. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kulwer Academic Publishers 2003).
    [CrossRef]
  15. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006).
    [CrossRef] [PubMed]
  16. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  17. M. Koshiba and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Opt. Lett. 29, 1739-1741 (2004).
    [CrossRef] [PubMed]
  18. J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
    [CrossRef]
  19. L. Farr, J. C. Knight, B. J. Mangan, and P. J. Roberts, "Low loss photonic crystal fiber," in Proc. European Conference on Optical Communications (ECOC 2002), paper PD 1.3, (2002).
  20. K. Tajima J. Zhou, K. Nakajima, and K. Sato "Ultralow loss and long length photonic crystal fiber,"J. Lightwave Technol. 22, 7-9 (2004).
    [CrossRef]
  21. B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts et al., "Slope-matched dispersion-compensating photonic crystal fiber," in Proc. Lasers and Electro-Optics (CLEO 2004), pp. 1069-1070, (2004).
  22. P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight, and P.St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
    [CrossRef]
  23. S.G. Leon-Saval, T.A. Birks, N.Y. Joy, A.K. George, W.J. Wadsworth, G. Kakarantzas, and P.St.J. Russell, "Splice-free interfacing of photonic crystal fibers," Opt. Lett. 30, 1629-1634 (2005).
    [CrossRef] [PubMed]

2006

2005

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design of dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
[CrossRef] [PubMed]

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight, and P.St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

S.G. Leon-Saval, T.A. Birks, N.Y. Joy, A.K. George, W.J. Wadsworth, G. Kakarantzas, and P.St.J. Russell, "Splice-free interfacing of photonic crystal fibers," Opt. Lett. 30, 1629-1634 (2005).
[CrossRef] [PubMed]

2004

2003

C.J.S. de Matos, K. P. Hansen, and J. R. Taylor, "Experimental characterization of Raman gain efficiency of holey fiber," Electron. Lett. 39, 424-425 (2003).
[CrossRef]

2002

Z. Yusoff, J.H. Lee, W. Belardi, T.M. Monro, P.C. Teh, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

1997

Belardi, W.

Birks, T.A.

Bottacini, M.

Bromage, J.

J. Bromage, "Raman amplification for fiber communication systems," J. Lightwave Technol. 22, 79-93 (2004).
[CrossRef]

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

Couny, F.

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight, and P.St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

Cucinotta, A.

de Matos, C.J.S.

C.J.S. de Matos, K. P. Hansen, and J. R. Taylor, "Experimental characterization of Raman gain efficiency of holey fiber," Electron. Lett. 39, 424-425 (2003).
[CrossRef]

Fujisawa, T.

George, A.K.

Hansen, K. P.

C.J.S. de Matos, K. P. Hansen, and J. R. Taylor, "Experimental characterization of Raman gain efficiency of holey fiber," Electron. Lett. 39, 424-425 (2003).
[CrossRef]

Joy, N.Y.

Kakarantzas, G.

Kakkar, C.

Knight, J.C.

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight, and P.St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

T.A. Birks, J.C. Knight, and P.St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Koshiba, M.

Lee, J.H.

Leon-Saval, S.G.

Lines, M. E.

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

Mangan, B.J.

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight, and P.St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

Monro, T.M.

Poli, F.

Richardson, D. J.

Roberts, P.J.

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight, and P.St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

Rottwitt, K.

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

Russell, P.St. J.

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight, and P.St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

Russell, P.St.J.

Sabert, H.

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight, and P.St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

Saitoh, K.

Selleri, S.

Taylor, J. R.

C.J.S. de Matos, K. P. Hansen, and J. R. Taylor, "Experimental characterization of Raman gain efficiency of holey fiber," Electron. Lett. 39, 424-425 (2003).
[CrossRef]

Teh, P.C.

Thyagarajan, K.

Varshney, S.K.

Wada, K.

Wadsworth, W.J.

Yusoff, Z.

Electron. Lett.

C.J.S. de Matos, K. P. Hansen, and J. R. Taylor, "Experimental characterization of Raman gain efficiency of holey fiber," Electron. Lett. 39, 424-425 (2003).
[CrossRef]

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design of dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Fiber. Commun. Rep.

P.J. Roberts, B.J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight, and P.St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kulwer Academic Publishers 2003).
[CrossRef]

B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts et al., "Slope-matched dispersion-compensating photonic crystal fiber," in Proc. Lasers and Electro-Optics (CLEO 2004), pp. 1069-1070, (2004).

L. Farr, J. C. Knight, B. J. Mangan, and P. J. Roberts, "Low loss photonic crystal fiber," in Proc. European Conference on Optical Communications (ECOC 2002), paper PD 1.3, (2002).

S. Namiki, Y. Ikegami, Y Shirasaka, and I. Oh-ishi, "Highly coupled high power pump laser modules," in Proc. Optical Amplifiers and Their Application (OAA 1993), Paper MD5, (1993).

M. N. Islam, Raman Amplification for Telecommunications 1 and 2 (Springer-Verlag, New York, 2004).

C. Headly and G. P. Agarwal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, New York, 2004).

S.K. Varshney, K. Saitoh, T. Fujisawa, and M. Koshiba, "Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: a leakage approach," in Proc. Optical Fiber Communication (OFC/NFOEC), paper no. OWD4, (2006).

S.K. Varshney, K. Saitoh, and M. Koshiba, "Raman performances of ultralow loss photonic crystal fiber amplifiers," in Proc. Lasers and Electro-Optics (IQEC/CLEO-PR 2005), paper no. CWE2-3, (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Transverse cross-section of the optimized PCF structure having lattice constant Λ=1.375 μm, d/Λ = 0.4434 (1–5th and 7–8th air-hole rings, shown by white color filled circles), d′/Λ = 0.2962 (6th air-hole ring, shown by red color filled circles), and d″/Λ = 0.60 (9–13th air-hole rings, shown by yellow color filled circles).

Fig. 2.
Fig. 2.

(a) Chromatic dispersion and (b) confinement loss of three different designed PCF structures; blue curve represents for the optimized fiber design as shown in Fig. 1, red curve denotes the case when the air-hole diameter of air-hole rings from 7 to 13 is d, while black curve stands for the case when the hole-diameter of air-hole rings 7–13 is d″.

Fig. 3.
Fig. 3.

Variation of RGE and effective area as a function of the wavelength. The RGE is obtained for an unpolarized light source at 1455-nm wavelength. The peak RGE value is 2.21 W-1∙km-1 at 1.52 μm.

Fig. 4.
Fig. 4.

(a) Chromatic dispersion of the optimized PCF structure and SSMF. The dispersion for PCF lies between -264 ps/nm/km and -1410 ps/nm/km and (b) Residual dispersion after compensation of dispersion in one span (80-km) of SSMF link by 1.45-km long optimized PCF. The residual dispersion is ±700 ps/nm, thus enabling the proposed PCF to be a suitable for 10 Gb/s transmission networks.

Fig. 5.
Fig. 5.

Spectral variation of (a) net gain, (b) DRBS, (c) noise figure, and (d) optical signal-to-noise ratio for a single pump of 1450-nm and 18 S-band channels with an initial power of -10 dBm/ch in 1.45-km long optimized PCF.

Fig. 6.
Fig. 6.

Variation of net gain as a function of wavelength with fiber attenuation as a parameter.

Fig. 7.
Fig. 7.

(a) Dispersion and (b) net gain characteristics of the optimized PCF with a tolerance of ±1% in the lattice constant. Red and black color solid lines represent the variation of lattice constant by ±1%, while blue color solid line stands for the optimized PCF structure.

Fig. 8.
Fig. 8.

(a) Dispersion and (b) net gain characteristics of the optimized PCF with a tolerance of ±1% in the hole-diameter d of first five air-hole rings while keeping other design parameters fixed. Red and black color solid lines represent the variation of hole-diameter d of first five air-hole rings by ±1%, while blue color solid line stands for the optimized PCF structure.

Fig. 9.
Fig. 9.

(a) Dispersion and (b) net gain characteristics of the optimized PCF with a tolerance of ±1% in the hole-diameter d′ of ring-core (i.e. 6th air-hole ring) while keeping other design parameters fixed. Red and black color solid curves represent the variation of hole-diameter d′ of ring-core by ±1%, while blue color solid curve stands for the optimized PCF structure.

Fig. 10.
Fig. 10.

(a) Dispersion and (b) net gain characteristics of the optimized PCF with a tolerance of ±1% in the hole-diameter d of the 7th and 8th air-hole rings while keeping other design parameters fixed. Red and black color solid curves represent the variation of hole-diameter d of the 7th and 8th air-hole rings by ±1%, while blue color solid curve stands for the optimized PCF structure.

Fig. 11.
Fig. 11.

(a) Dispersion and (b) net gain characteristics of the optimized PCF with a tolerance of ±1% in the hole-diameter d″ of 9–13th air-hole rings while keeping other design parameters fixed. Red and black color solid curves represent the variation of hole-diameter d″ of 9–13th air-hole rings by ±1%, while blue color solid curve stands for the optimized PCF structure.

Tables (2)

Tables Icon

Table 1. Raman performances of the optimized PCF (Λ=1.375 μm, d/Λ=0.4434, d′/Λ=0.2962, d″/Λ=0.60) for S-band.

Tables Icon

Table 2. Impact of the fiber tolerances on the Raman performances of the proposed PCF module.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F Λ d d = exp ( w 1 f 1 ) if D ( λ 1 ) > D ( λ 2 ) > D ( λ 3 )
= 1000 else
f 1 = λ = 1.48 μ m 1.53 μ m D ( λ ) ,
γ R = S C SiSi ( Δ ν ) i s ( x , y ) i p ( x , y ) dxdy

Metrics