Abstract

Recently, metal-clad leaky waveguides (MCLW) have been proposed as highly sensitive single point sensor devices for small-volume refractive index (RI) and fluorescence detection. In this paper, we present a theoretical study of the efficiency of MCLW-based sensors on glass substrate, for fluorescence detection. It is shown that MCLWs can be designed in order to obtain an efficient coupling of fluorescence emission with their leaky modes. This leads to a higher directionality of the fluorescence emission into the glass substrate, when compared to the emission near a pure glass/water interface and surface-plasmon coupled emission (SPCE). Numerical analyses also indicate that collecting the fluorescence emission through a water-immersed microscope objective, may result in a 70-fold enhancement of the detectable signal when compared to conventional fluorescence detection carried out on a glass slide.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Hirschfeld, “Total reflection fluorescence,” Can. Spectroscopy 10, 128 (1965).
  2. T. Ruckstuhl, M. Rankl, and S. Seeger, "Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument," Biosens. Bioelectron. 18, 1193-1199 (2003).
    [CrossRef] [PubMed]
  3. G. Stengel, W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy," Nucleic Acids Res. 33, e69 (2005).
    [CrossRef]
  4. J. R. Lakowicz, "Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
    [CrossRef]
  5. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
    [CrossRef]
  6. W. Weber and C. Eagen, "Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal," Opt. Lett. 4, 236 (1979.
    [CrossRef] [PubMed]
  7. C. D. Geddes, I. Gryczynski, Z. Gryczynski, "Directional surface plasmon coupled emission," J. Fluoresc. 14, 119-123 (2004).
    [CrossRef] [PubMed]
  8. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
    [CrossRef] [PubMed]
  9. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8855.
    [CrossRef] [PubMed]
  10. E. Matveeva, J. Mailcka, I. Gryczynski, J. R. Lakowicz, "Multi-wavelength immunoassays using surface plasmon-coupled emission," Biochem. Biophys. Res. Commun. 313,721-726 (2004).
    [CrossRef]
  11. J. Enderlein, "Single-molecule fluorescence near a metal layer," Chem. Phys. 247,1-9 (1999).
    [CrossRef]
  12. M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003).
    [CrossRef]
  13. M. Zourob, N. J. Goddard, "Metal clad leaky waveguides for chemical and biosensing applications," Biosens. and Bioelectron. 20, 1718-1727 (2005).
    [CrossRef] [PubMed]
  14. M. Zourob, S. Mohr, P. R. Fielden N. J. Goddard, "Small-volume refractive index and fluorescence sensor for micro total analytical system (μ-TAS) applications," Sens. Actuators B 94, 304-312 (2003).
    [CrossRef]
  15. J. Enderlein, "Fluorescence detection of single molecules near a solution/glass interface-an electrodynamic analysis," Chem. Phys. Lett. 308, 263-266 (1999).
    [CrossRef]
  16. J. Enderlein, "Theoretical study of detection of a dipole emitter through an objective with high numerical aperture," Opt. Lett. 25, 634-636 (2000),
    [CrossRef]
  17. R. R. Chance, A. Prock, R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
    [CrossRef]
  18. J. Enderlein, "A theoretical investigation of single-molecule fluorescence detection on thin metallic layers," Biophysical Journal 78, 2151-2158 (2000).
    [CrossRef] [PubMed]
  19. M. Born, E. Wolf, Principles of optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (Cambridge University Press, 1999), p. 65.
  20. N. J. Harrick, Internal Reflection Spectroscopy, (Interscience New York, 1967).
  21. N. Skivesen, R. Horvath, and H. C. Pedersen, "Optimization of metal-clad waveguide sensors," Sens. and Act. B 106, 668-676 (2005).
    [CrossRef]
  22. H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
    [CrossRef]
  23. W. Lukosz, "Light-emission by magnetic and electric dipoles close to a plane dielectric interface. 3. radiation-patterns of dipoles with arbitrary orientation," J. Opt. Soc. Am. 69, 1495-1503 (1979).
    [CrossRef]

2005 (6)

G. Stengel, W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy," Nucleic Acids Res. 33, e69 (2005).
[CrossRef]

M. Zourob, N. J. Goddard, "Metal clad leaky waveguides for chemical and biosensing applications," Biosens. and Bioelectron. 20, 1718-1727 (2005).
[CrossRef] [PubMed]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

N. Skivesen, R. Horvath, and H. C. Pedersen, "Optimization of metal-clad waveguide sensors," Sens. and Act. B 106, 668-676 (2005).
[CrossRef]

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8855.
[CrossRef] [PubMed]

2004 (4)

C. D. Geddes, I. Gryczynski, Z. Gryczynski, "Directional surface plasmon coupled emission," J. Fluoresc. 14, 119-123 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, "Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

E. Matveeva, J. Mailcka, I. Gryczynski, J. R. Lakowicz, "Multi-wavelength immunoassays using surface plasmon-coupled emission," Biochem. Biophys. Res. Commun. 313,721-726 (2004).
[CrossRef]

2003 (3)

M. Zourob, S. Mohr, P. R. Fielden N. J. Goddard, "Small-volume refractive index and fluorescence sensor for micro total analytical system (μ-TAS) applications," Sens. Actuators B 94, 304-312 (2003).
[CrossRef]

T. Ruckstuhl, M. Rankl, and S. Seeger, "Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument," Biosens. Bioelectron. 18, 1193-1199 (2003).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003).
[CrossRef]

2000 (2)

J. Enderlein, "A theoretical investigation of single-molecule fluorescence detection on thin metallic layers," Biophysical Journal 78, 2151-2158 (2000).
[CrossRef] [PubMed]

J. Enderlein, "Theoretical study of detection of a dipole emitter through an objective with high numerical aperture," Opt. Lett. 25, 634-636 (2000),
[CrossRef]

1999 (2)

J. Enderlein, "Fluorescence detection of single molecules near a solution/glass interface-an electrodynamic analysis," Chem. Phys. Lett. 308, 263-266 (1999).
[CrossRef]

J. Enderlein, "Single-molecule fluorescence near a metal layer," Chem. Phys. 247,1-9 (1999).
[CrossRef]

1979 (2)

1978 (1)

R. R. Chance, A. Prock, R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

1965 (1)

Hirschfeld, “Total reflection fluorescence,” Can. Spectroscopy 10, 128 (1965).

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Cerovic, G.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Chardon, A.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Choumane, H.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Eagen, C.

Enderlein, J.

J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8855.
[CrossRef] [PubMed]

J. Enderlein, "A theoretical investigation of single-molecule fluorescence detection on thin metallic layers," Biophysical Journal 78, 2151-2158 (2000).
[CrossRef] [PubMed]

J. Enderlein, "Theoretical study of detection of a dipole emitter through an objective with high numerical aperture," Opt. Lett. 25, 634-636 (2000),
[CrossRef]

J. Enderlein, "Single-molecule fluorescence near a metal layer," Chem. Phys. 247,1-9 (1999).
[CrossRef]

J. Enderlein, "Fluorescence detection of single molecules near a solution/glass interface-an electrodynamic analysis," Chem. Phys. Lett. 308, 263-266 (1999).
[CrossRef]

Fielden, P. R.

M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003).
[CrossRef]

Geddes, C. D.

C. D. Geddes, I. Gryczynski, Z. Gryczynski, "Directional surface plasmon coupled emission," J. Fluoresc. 14, 119-123 (2004).
[CrossRef] [PubMed]

Goddard, N. J.

M. Zourob, N. J. Goddard, "Metal clad leaky waveguides for chemical and biosensing applications," Biosens. and Bioelectron. 20, 1718-1727 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003).
[CrossRef]

Goutel, C.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Gryczynski, I.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

C. D. Geddes, I. Gryczynski, Z. Gryczynski, "Directional surface plasmon coupled emission," J. Fluoresc. 14, 119-123 (2004).
[CrossRef] [PubMed]

E. Matveeva, J. Mailcka, I. Gryczynski, J. R. Lakowicz, "Multi-wavelength immunoassays using surface plasmon-coupled emission," Biochem. Biophys. Res. Commun. 313,721-726 (2004).
[CrossRef]

Gryczynski, Z.

C. D. Geddes, I. Gryczynski, Z. Gryczynski, "Directional surface plasmon coupled emission," J. Fluoresc. 14, 119-123 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

Ha, N.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Hirschfeld,

Hirschfeld, “Total reflection fluorescence,” Can. Spectroscopy 10, 128 (1965).

Horvath, R.

N. Skivesen, R. Horvath, and H. C. Pedersen, "Optimization of metal-clad waveguide sensors," Sens. and Act. B 106, 668-676 (2005).
[CrossRef]

Knoll, W.

G. Stengel, W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy," Nucleic Acids Res. 33, e69 (2005).
[CrossRef]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

J. R. Lakowicz, "Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

E. Matveeva, J. Mailcka, I. Gryczynski, J. R. Lakowicz, "Multi-wavelength immunoassays using surface plasmon-coupled emission," Biochem. Biophys. Res. Commun. 313,721-726 (2004).
[CrossRef]

Lukosz, W.

Mailcka, J.

E. Matveeva, J. Mailcka, I. Gryczynski, J. R. Lakowicz, "Multi-wavelength immunoassays using surface plasmon-coupled emission," Biochem. Biophys. Res. Commun. 313,721-726 (2004).
[CrossRef]

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

Matveeva, E.

E. Matveeva, J. Mailcka, I. Gryczynski, J. R. Lakowicz, "Multi-wavelength immunoassays using surface plasmon-coupled emission," Biochem. Biophys. Res. Commun. 313,721-726 (2004).
[CrossRef]

McDonnell, M.

M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003).
[CrossRef]

Mohr, S.

M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003).
[CrossRef]

M. Zourob, S. Mohr, P. R. Fielden N. J. Goddard, "Small-volume refractive index and fluorescence sensor for micro total analytical system (μ-TAS) applications," Sens. Actuators B 94, 304-312 (2003).
[CrossRef]

Nelep, C.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Pedersen, H. C.

N. Skivesen, R. Horvath, and H. C. Pedersen, "Optimization of metal-clad waveguide sensors," Sens. and Act. B 106, 668-676 (2005).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Rankl, M.

T. Ruckstuhl, M. Rankl, and S. Seeger, "Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument," Biosens. Bioelectron. 18, 1193-1199 (2003).
[CrossRef] [PubMed]

Reymond, G. O.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Ruckstuhl, T.

J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8855.
[CrossRef] [PubMed]

T. Ruckstuhl, M. Rankl, and S. Seeger, "Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument," Biosens. Bioelectron. 18, 1193-1199 (2003).
[CrossRef] [PubMed]

Seeger, S.

T. Ruckstuhl, M. Rankl, and S. Seeger, "Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument," Biosens. Bioelectron. 18, 1193-1199 (2003).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Skivesen, N.

N. Skivesen, R. Horvath, and H. C. Pedersen, "Optimization of metal-clad waveguide sensors," Sens. and Act. B 106, 668-676 (2005).
[CrossRef]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Stengel, G.

G. Stengel, W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy," Nucleic Acids Res. 33, e69 (2005).
[CrossRef]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Treves Brown, B. J.

M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003).
[CrossRef]

Vallet, F.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Weber, W.

Weisbuch, C.

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Zourob, M.

M. Zourob, N. J. Goddard, "Metal clad leaky waveguides for chemical and biosensing applications," Biosens. and Bioelectron. 20, 1718-1727 (2005).
[CrossRef] [PubMed]

M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003).
[CrossRef]

M. Zourob, S. Mohr, P. R. Fielden N. J. Goddard, "Small-volume refractive index and fluorescence sensor for micro total analytical system (μ-TAS) applications," Sens. Actuators B 94, 304-312 (2003).
[CrossRef]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Anal. Biochem. (2)

J. R. Lakowicz, "Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

App. Phys. Lett. (1)

H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

E. Matveeva, J. Mailcka, I. Gryczynski, J. R. Lakowicz, "Multi-wavelength immunoassays using surface plasmon-coupled emission," Biochem. Biophys. Res. Commun. 313,721-726 (2004).
[CrossRef]

Biophysical Journal (1)

J. Enderlein, "A theoretical investigation of single-molecule fluorescence detection on thin metallic layers," Biophysical Journal 78, 2151-2158 (2000).
[CrossRef] [PubMed]

Biosens. and Bioelectron. (1)

M. Zourob, N. J. Goddard, "Metal clad leaky waveguides for chemical and biosensing applications," Biosens. and Bioelectron. 20, 1718-1727 (2005).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

T. Ruckstuhl, M. Rankl, and S. Seeger, "Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument," Biosens. Bioelectron. 18, 1193-1199 (2003).
[CrossRef] [PubMed]

Can. Spectroscopy (1)

Hirschfeld, “Total reflection fluorescence,” Can. Spectroscopy 10, 128 (1965).

Chem. Phys. (1)

J. Enderlein, "Single-molecule fluorescence near a metal layer," Chem. Phys. 247,1-9 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

J. Enderlein, "Fluorescence detection of single molecules near a solution/glass interface-an electrodynamic analysis," Chem. Phys. Lett. 308, 263-266 (1999).
[CrossRef]

J. Fluoresc. (1)

C. D. Geddes, I. Gryczynski, Z. Gryczynski, "Directional surface plasmon coupled emission," J. Fluoresc. 14, 119-123 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Nucleic Acids Res. (1)

G. Stengel, W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy," Nucleic Acids Res. 33, e69 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Sens. Actuators B (2)

M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003).
[CrossRef]

M. Zourob, S. Mohr, P. R. Fielden N. J. Goddard, "Small-volume refractive index and fluorescence sensor for micro total analytical system (μ-TAS) applications," Sens. Actuators B 94, 304-312 (2003).
[CrossRef]

Sens. and Act. B (1)

N. Skivesen, R. Horvath, and H. C. Pedersen, "Optimization of metal-clad waveguide sensors," Sens. and Act. B 106, 668-676 (2005).
[CrossRef]

Other (2)

M. Born, E. Wolf, Principles of optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (Cambridge University Press, 1999), p. 65.

N. J. Harrick, Internal Reflection Spectroscopy, (Interscience New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Setup of MCLW-coupled emission: An aqueous solution of fluorescing molecules is placed in top of a thin dielectric film and a thin silver film deposited on glass. Fluorescence excitation is performed from the glass side by a plane wave with incident angle assuring maximum transmittivity. A single molecule is depicted as a dipole emitter with a distance z from the dielectric surface and forming an angle β with the vertical (optical) axis. The angular distribution of radiation into glass is depicted as a red curve and is a function of angle θ.

Fig. 2.
Fig. 2.

Maximum fluorescence emission probability density into the glass half space, calculated for a vertically oriented molecule placed at z = 0, as a function of the silver film thickness and the dielectric film thickness.

Fig. 3.
Fig. 3.

(a) De-coupling angle into glass of the fundamental TM mode of the MCLW waveguide, calculated for a silver thickness of 46 nm, as a function of the dielectric film thickness (solid line), and angular position of the fluorescence emission peak into glass, for a vertically oriented molecule located directly above the dielectric film (red circles). (B) Imaginary part of the effective refractive index for the fundamental TM mode of the MCLW waveguide, calculated for a silver thickness of 46 nm, as a function of the dielectric film thickness (blue line). On the same plot it is shown the full width at half-maximum (FWHM) of the fluorescence emission peak into glass, for a vertically oriented molecule located directly above the dielectric film (green line).

Fig. 4.
Fig. 4.

(A) Angular distribution of emission for a vertically oriented molecule directly on the dielectric film surface, calculated for a silver film thickness dm = 46 nm and a dielectric film thickness df = 340 nm. (B) Angular distribution of emission for a horizontally oriented molecule directly on the dielectric film surface, calculated for a silver film thickness dm = 40 nm and a dielectric film thickness df = 200 nm.

Fig. 5.
Fig. 5.

Maximum fluorescence emission probability density into the glass half space, calculated for a horizontally oriented molecule placed at z = 0, as a function of the silver film thickness and the dielectric film thickness.

Fig. 6.
Fig. 6.

Total emission rate in presence of the multilayer, normalized to the total emission rate in the free space, as a function of the dielectric film thickness, calculated for a vertically-oriented dipole and dm = 46 nm (blue line), and a horizontally-oriented dipole and dm = 40 nm (red line).

Fig. 7.
Fig. 7.

(A) Fraction of energy radiated into the glass half space by a vertically oriented molecule as a function of the molecule’s distance from the surface. The blue line refers to the case of a molecule on a dielectric film/silver film multilayer (MCLW), with a silver thickness of 46 nm and a dielectric film thickness of 340 nm. The red line refers to the case of a molecule on a silver film (surface plasmon-coupled emission - SPCE), with a silver thickness of 46 nm. The magenta line refers to the case of a molecule on a pure glass/water interface. (B) Fraction of energy radiated into the glass half space for a horizontally oriented molecule, as a function of the molecule’s distance from the surface. The blue line refers to the case of a molecule on a dielectric film/silver film multilayer (MCLW), with a silver thickness of 40 nm and a dielectric film thickness of 200 nm. The red line refers to the case of a molecule on a silver film (surface plasmon-coupled emission - SPCE), with a silver thickness of 40 nm. The magenta line refers to the case of a molecule on a pure glass/water interface.

Fig. 8.
Fig. 8.

(A) Maximum transmission coefficient |Tp |2 through the MCLW for a p-polarized plane wave incident from the glass side, as a function of the silver film thickness and the dielectric film thickness. (B) Maximum transmission coefficient |Ts |2 through the MCLW for an s-polarized plane wave incident from the glass side, as a function of the silver film thickness and the dielectric film thickness.

Fig. 9.
Fig. 9.

(A) Maximum detectable fluorescence intensity for s-polarized plane wave excitation from the glass side at the incident angle giving maximum electric field intensity at z = 0, when collecting over the whole glass half space, as a function of the molecule’s distance from the surface. The blue line refers to the case of a molecule on a dielectric film/silver film multilayer (MCLW), with a silver thickness of 40 nm and a dielectric film thickness of 200 nm. The magenta line refers to the case of a molecule on a pure glass/water interface. Fluorescing molecules are randomly oriented. The green line refers to SAF detection. The red line refers to SPCE with a silver thickness of 40 nm. (B) Maximum detectable fluorescence intensity for p-polarized plane wave excitation from the glass side at the incident angle giving maximum electric field intensity at z = 0, when collecting over the whole glass half space, as a function of the molecule’s distance from the surface. The blue line refers to the case of a molecule on a dielectric film/silver film multilayer (MCLW), with a silver thickness of 46 nm and a dielectric film thickness of 200 nm.. The magenta line refers to the case of a molecule on a pure glass/water interface. The green line refers to SAF detection. Fluorescing molecules are randomly oriented.

Fig. 10.
Fig. 10.

(A) Maximum detectable fluorescence intensity for p-polarized plane wave excitation from the glass side at the incident angle giving maximum electric field intensity at z = 0, when collecting through a water-immersed microscope objective with numerical aperture NA = 1.3, as a function of the silver film thickness and the dielectric film thickness. Fluorescing molecules are randomly oriented. (B) Maximum detectable fluorescence intensity for s-polarized plane wave excitation from the glass side at the incident angle giving maximum electric field intensity at z = 0, when collecting through a water-immersed microscope objective with numerical aperture NA = 1.3, as a function of the silver film thickness and the dielectric film thickness. Fluorescing molecules are randomly oriented.

Fig. 11.
Fig. 11.

Angular distribution of emission for a molecule directly on the dielectric film surface, calculated for a silver film thickness dm = 40 nm and a dielectric film thickness df = 175 nm. The blue line refers to a vertically oriented molecule, whereas the red line refers to a horizontally oriented molecule. The green lines in the plot delimit the cone of light captured by the water-immersed microscope objective with numerical aperture NA = 1.3.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S w , g θ ϕ z β = S w , g ( θ , z ) cos 2 β + S w , g , x ( θ , z ) cos 2 ϕ + S w , g , y ( θ , z ) sin 2 ϕ sin 2 β ,
S total ( z , β ) = S total ( z ) cos 2 β + S total ( z ) sin 2 β ,
S total ( z ) = ω n w k 0 3 p 2 3 + ω 2 p Im E R ( z ) .
I g , ( z ) = 2 π 0 π 2 d θ sin θ S g , ( θ , z ) S total , ( z ) ,
I w , ( z ) = 2 π 0 θ max d θ sin θ S w , ( θ , z ) S total , ( z ) ,
I diss , ( z ) = S total , ( z ) 2 π 0 π 2 d θ sin θ [ S g , θ ϕ z + S w , θ ϕ z ] .
T j 0 = t j gm t j mdw exp ( j k zm d m ) + r j gm r j mdw exp ( j k zm d m ) j = p , s .
t j mdw = ( t j mf t j fw ) [ exp ( j k zf d f ) + r j mf r j fw exp ( j k zf d f ) ] j = p , s .
r j mdw = ( r j mf + r j fw exp ( 2 j k zf d f ) ) [ 1 + r j mf r j fw exp ( 2 j k zf d f ) ] j = p , s .
T j 2 I w , g ( z ) p ̂ j = p , s .

Metrics