Abstract

We propose and demonstrate a polarization controller, which is a concatenation of three Faraday rotators based on magneto-optic crystals separated by two fixed quarter wave plates. Comparing with former schemes, this polarization controller is fast, accurate and stable because it is completely driven by electric signals and has no mechanically moving parts. It is simple-structured and low-cost. Moreover, it is programmable to convert an arbitrary state of polarization (SOP) from the input to any designated SOP at the output. It can also be used as a polarization scrambler. It has potential applications in the research of the polarization dependence of optical communication systems or the compensation of polarization mode dispersion (PMD), etc.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. Walker and G. R. Walker, "Polarization control for coherent communications," J. Lightwave Technol. 8, 438-458 (1990).
    [CrossRef]
  2. A. E. Willner, S. M. R. M. Nezam, L. Yan, Z. Pan, and M. C. Hauer, "Monitoring and control of polarization-related impairments in optical fiber systems," J. Lightwave Technol. 22, 106-125 (2004).
    [CrossRef]
  3. R. Noé, D. Sandel, and V. Mirvoda, "PMD in high-bit-rate transmission and means for its mitigation," J. Sel. Top. Quantum 10, 341-355 (2004).
    [CrossRef]
  4. W. H. J. Aarts and G. D. Khoe, "New endless polarization control method using three fiber squeezers," J. Lightwave Technol. 7, 033-1043 (1989).
    [CrossRef]
  5. J. Prat, J. Comellas, and G. Junyent, "Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation," Photon. Technol. Lett. 7, 1430-1432 (1995).
    [CrossRef]
  6. T. Chiba, Y. Ohtera, and S. Kawakami, "Polarization stabilizer using liquid crystal rotatable waveplates," J. Lightwave Technol. 17, 885-890 (1999).
    [CrossRef]
  7. K. Hirabayashi and C. Amano, "Feed-forward continuous and complete polarization control with a PLZT rotatable-variable waveplate and inline polarimeter," J. Lightwave Technol. 21, 1920-1932 (2003).
    [CrossRef]
  8. H. Shimizu and K. Kaede, "Endless polarisation controller using electro-optic waveplates," Electron. Lett. 24, 412-413, (1988).
    [CrossRef]
  9. T. Saitoh and S. Kinugawa, "Magnetic field rotating-type Faraday polarization controller," Photon. Technol. Lett.,  15, 1404-1406 (2003).
    [CrossRef]
  10. K. Ikeda, T. Takagi, T. Hatano, H. Kazami, Y. Mimura, and H. Matsuura, "Endless tracking polarization controller," Furukawa Review 23,32 (2003).
  11. D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, "Magneto-optic-based devices for polarization control," J. Opt. A: Pure Appl. Opt. 6,98 (2004);
    [CrossRef]
  12. X. Yao, L. Yan, and Y. Shi, "Highly repeatable all-solid-state polarization-state generator," Opt. Lett. 30,1324 (2005).
    [CrossRef] [PubMed]
  13. S. Li, C. Yang, E. Zhang, and G. Jin, "Compact optical roll-angle sensor with large measurement range and high sensitivity," Opt. Lett. 30, 242-244 (2005).
    [CrossRef] [PubMed]
  14. S. Li, C. Yang, E. Zhang, and G. Jin, Dynamic performance of magneto-optical Bi-substitutued rare-earth iron garnet, Chin. Opt. Lett. 3, 38-41 (2005)
  15. W. Zhao, "Magneto-optic properties and sensing performance of garnet YbBi:YIG," Sens. and Actuators, A. 89, 250-254 (2001).
    [CrossRef]

2005 (3)

2004 (3)

A. E. Willner, S. M. R. M. Nezam, L. Yan, Z. Pan, and M. C. Hauer, "Monitoring and control of polarization-related impairments in optical fiber systems," J. Lightwave Technol. 22, 106-125 (2004).
[CrossRef]

R. Noé, D. Sandel, and V. Mirvoda, "PMD in high-bit-rate transmission and means for its mitigation," J. Sel. Top. Quantum 10, 341-355 (2004).
[CrossRef]

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, "Magneto-optic-based devices for polarization control," J. Opt. A: Pure Appl. Opt. 6,98 (2004);
[CrossRef]

2003 (3)

K. Hirabayashi and C. Amano, "Feed-forward continuous and complete polarization control with a PLZT rotatable-variable waveplate and inline polarimeter," J. Lightwave Technol. 21, 1920-1932 (2003).
[CrossRef]

T. Saitoh and S. Kinugawa, "Magnetic field rotating-type Faraday polarization controller," Photon. Technol. Lett.,  15, 1404-1406 (2003).
[CrossRef]

K. Ikeda, T. Takagi, T. Hatano, H. Kazami, Y. Mimura, and H. Matsuura, "Endless tracking polarization controller," Furukawa Review 23,32 (2003).

1999 (1)

1995 (1)

J. Prat, J. Comellas, and G. Junyent, "Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation," Photon. Technol. Lett. 7, 1430-1432 (1995).
[CrossRef]

1990 (1)

N. G. Walker and G. R. Walker, "Polarization control for coherent communications," J. Lightwave Technol. 8, 438-458 (1990).
[CrossRef]

1988 (1)

H. Shimizu and K. Kaede, "Endless polarisation controller using electro-optic waveplates," Electron. Lett. 24, 412-413, (1988).
[CrossRef]

Abraham, D.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, "Magneto-optic-based devices for polarization control," J. Opt. A: Pure Appl. Opt. 6,98 (2004);
[CrossRef]

Amano, C.

Chiba, T.

Comellas, J.

J. Prat, J. Comellas, and G. Junyent, "Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation," Photon. Technol. Lett. 7, 1430-1432 (1995).
[CrossRef]

Goldring, D.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, "Magneto-optic-based devices for polarization control," J. Opt. A: Pure Appl. Opt. 6,98 (2004);
[CrossRef]

Hatano, T.

K. Ikeda, T. Takagi, T. Hatano, H. Kazami, Y. Mimura, and H. Matsuura, "Endless tracking polarization controller," Furukawa Review 23,32 (2003).

Hauer, M. C.

Hirabayashi, K.

Ikeda, K.

K. Ikeda, T. Takagi, T. Hatano, H. Kazami, Y. Mimura, and H. Matsuura, "Endless tracking polarization controller," Furukawa Review 23,32 (2003).

Jin, G.

Junyent, G.

J. Prat, J. Comellas, and G. Junyent, "Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation," Photon. Technol. Lett. 7, 1430-1432 (1995).
[CrossRef]

Kaede, K.

H. Shimizu and K. Kaede, "Endless polarisation controller using electro-optic waveplates," Electron. Lett. 24, 412-413, (1988).
[CrossRef]

Kawakami, S.

Kazami, H.

K. Ikeda, T. Takagi, T. Hatano, H. Kazami, Y. Mimura, and H. Matsuura, "Endless tracking polarization controller," Furukawa Review 23,32 (2003).

Kinugawa, S.

T. Saitoh and S. Kinugawa, "Magnetic field rotating-type Faraday polarization controller," Photon. Technol. Lett.,  15, 1404-1406 (2003).
[CrossRef]

Li, S.

Matsuura, H.

K. Ikeda, T. Takagi, T. Hatano, H. Kazami, Y. Mimura, and H. Matsuura, "Endless tracking polarization controller," Furukawa Review 23,32 (2003).

Mendlovic, D.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, "Magneto-optic-based devices for polarization control," J. Opt. A: Pure Appl. Opt. 6,98 (2004);
[CrossRef]

Mimura, Y.

K. Ikeda, T. Takagi, T. Hatano, H. Kazami, Y. Mimura, and H. Matsuura, "Endless tracking polarization controller," Furukawa Review 23,32 (2003).

Mirvoda, V.

R. Noé, D. Sandel, and V. Mirvoda, "PMD in high-bit-rate transmission and means for its mitigation," J. Sel. Top. Quantum 10, 341-355 (2004).
[CrossRef]

Nezam, S. M. R. M.

Noé, R.

R. Noé, D. Sandel, and V. Mirvoda, "PMD in high-bit-rate transmission and means for its mitigation," J. Sel. Top. Quantum 10, 341-355 (2004).
[CrossRef]

Ohtera, Y.

Pan, Z.

Prat, J.

J. Prat, J. Comellas, and G. Junyent, "Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation," Photon. Technol. Lett. 7, 1430-1432 (1995).
[CrossRef]

Saitoh, T.

T. Saitoh and S. Kinugawa, "Magnetic field rotating-type Faraday polarization controller," Photon. Technol. Lett.,  15, 1404-1406 (2003).
[CrossRef]

Sandel, D.

R. Noé, D. Sandel, and V. Mirvoda, "PMD in high-bit-rate transmission and means for its mitigation," J. Sel. Top. Quantum 10, 341-355 (2004).
[CrossRef]

Shabtay, G.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, "Magneto-optic-based devices for polarization control," J. Opt. A: Pure Appl. Opt. 6,98 (2004);
[CrossRef]

Shi, Y.

Shimizu, H.

H. Shimizu and K. Kaede, "Endless polarisation controller using electro-optic waveplates," Electron. Lett. 24, 412-413, (1988).
[CrossRef]

Takagi, T.

K. Ikeda, T. Takagi, T. Hatano, H. Kazami, Y. Mimura, and H. Matsuura, "Endless tracking polarization controller," Furukawa Review 23,32 (2003).

Walker, G. R.

N. G. Walker and G. R. Walker, "Polarization control for coherent communications," J. Lightwave Technol. 8, 438-458 (1990).
[CrossRef]

Walker, N. G.

N. G. Walker and G. R. Walker, "Polarization control for coherent communications," J. Lightwave Technol. 8, 438-458 (1990).
[CrossRef]

Willner, A. E.

Yan, L.

Yang, C.

Yao, X.

Zalevsky, Z.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, "Magneto-optic-based devices for polarization control," J. Opt. A: Pure Appl. Opt. 6,98 (2004);
[CrossRef]

Zhang, E.

Chin. Opt. Lett. (1)

Electron. Lett. (1)

H. Shimizu and K. Kaede, "Endless polarisation controller using electro-optic waveplates," Electron. Lett. 24, 412-413, (1988).
[CrossRef]

Furukawa Review (1)

K. Ikeda, T. Takagi, T. Hatano, H. Kazami, Y. Mimura, and H. Matsuura, "Endless tracking polarization controller," Furukawa Review 23,32 (2003).

J. Lightwave Technol. (4)

J. Opt. A: Pure Appl. Opt. (1)

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, "Magneto-optic-based devices for polarization control," J. Opt. A: Pure Appl. Opt. 6,98 (2004);
[CrossRef]

J. Sel. Top. Quantum (1)

R. Noé, D. Sandel, and V. Mirvoda, "PMD in high-bit-rate transmission and means for its mitigation," J. Sel. Top. Quantum 10, 341-355 (2004).
[CrossRef]

Opt. Lett. (2)

Photon. Technol. Lett. (2)

J. Prat, J. Comellas, and G. Junyent, "Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation," Photon. Technol. Lett. 7, 1430-1432 (1995).
[CrossRef]

T. Saitoh and S. Kinugawa, "Magnetic field rotating-type Faraday polarization controller," Photon. Technol. Lett.,  15, 1404-1406 (2003).
[CrossRef]

Other (2)

W. H. J. Aarts and G. D. Khoe, "New endless polarization control method using three fiber squeezers," J. Lightwave Technol. 7, 033-1043 (1989).
[CrossRef]

W. Zhao, "Magneto-optic properties and sensing performance of garnet YbBi:YIG," Sens. and Actuators, A. 89, 250-254 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Configuration of the polarization controller. FR: Faraday Rotator; QWP: quarter wave plate.

Fig. 2.
Fig. 2.

An example of the polarization controlling scheme shown on the Poincare sphere. A: input SOP, B: output SOP after the first Faraday rotator, φ1=-26.5651°, C: output SOP after the first QWP, D: output SOP after the second Faraday rotator, φ2=87.1304°, E: output SOP after the second QWP, F: final output SOP, φ3=45.0000°. (a) Three-dimensional view. (b) Projection on the S1=0 plane. (c) Projection on the S2=0 plane. (d) Projection on the S3=0 plane.

Fig. 3.
Fig. 3.

Output SOPs of 5000 independent samples when the Faraday rotators are randomly controlled. (Input SOP : [0.3000, 0.8660, 0.4000])

Fig. 4.
Fig. 4.

Experimental results shown on Poincare sphere. (a) Output SOPs when all the rotation angles are randomized; input SOP is [0.2673, -0.6118, 0.7424]. (b) Output SOPs when only the 1st Faraday rotator is controlled while the other two are fixed. (c) Output SOPs when only the 2nd Faraday rotator is controlled while the other two are fixed. (d) Output SOPs when only the 3rd Faraday rotator is controlled while the other two are fixed.

Tables (1)

Tables Icon

Table. 1 Parameters of the fabricated Faraday rotator

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J = [ cos φ sin φ sin φ cos φ ]
S = [ cos 2 φ sin 2 φ 0 sin 2 φ cos 2 φ 0 0 0 1 ]
φ 1 = arctan ( b a ) 2
φ 2 = 2 π fix ( Δ θ π ) fix ( Δ θ π ) Δ θ 2
φ 3 = arctan ( y x ) 2
Δ θ = ( 1 sgn ( a ) 2 ) π + arctan c sgn ( a ) a 2 + b 2 ( 1 sgn ( x ) 2 ) π + arctan z sgn ( x ) x 2 + y 2

Metrics