Abstract

We present a method for directly analyzing photonic nanodevices and apply it to photonic crystal cavities. Two-dimensional photonic crystals are scanned and reproduced in computer memory for Finite Difference Time Domain simuations. The results closely match experimental observations, with a fidelity far beyond that for idealized structures. This analysis allows close examination of error mechanisms and analytical error models.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B: Lasers Opt. 81, 283-293 (2005).
  2. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic Crystal waveguides: role of fabrication disorder and photon Group velocity." Phys. Rev. Lett. 94, 033,903-003,904 (2005).
  3. A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B. 72, 153,102- (2005).
  4. P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
    [CrossRef]
  5. J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot." Appl. Phys. Lett. 82, 2374-2376 (2003).
    [CrossRef]
  6. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
    [CrossRef]
  7. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwells Equation and the Schrödinger Equation (Wiley-Interscience Publications, New York, 2001).
  8. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwells equations with shifting material boundaries," Phys. Rev. E 65066611 (2002).
    [CrossRef]
  9. D. Englund, I. Fushman, and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 12, 5961-5975 (2005).
  10. J. H.C. Casey, D. D. Sell, and K. W. Wecht, "," J. Appl. Phys. 46, 250 (1975).
    [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003).
  12. G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
    [CrossRef]
  13. J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, "Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter," Appl. Phys. Lett. 78, 1180-1182 (2001).
    [CrossRef]

2005 (3)

S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B: Lasers Opt. 81, 283-293 (2005).

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

D. Englund, I. Fushman, and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 12, 5961-5975 (2005).

2003 (2)

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef]

J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot." Appl. Phys. Lett. 82, 2374-2376 (2003).
[CrossRef]

2002 (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwells equations with shifting material boundaries," Phys. Rev. E 65066611 (2002).
[CrossRef]

2001 (1)

J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, "Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter," Appl. Phys. Lett. 78, 1180-1182 (2001).
[CrossRef]

1996 (1)

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

1975 (1)

J. H.C. Casey, D. D. Sell, and K. W. Wecht, "," J. Appl. Phys. 46, 250 (1975).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

Barrette, J. P.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Bozada, C. A.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Busch, K.

J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, "Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter," Appl. Phys. Lett. 78, 1180-1182 (2001).
[CrossRef]

Casey, J. H.C.

J. H.C. Casey, D. D. Sell, and K. W. Wecht, "," J. Appl. Phys. 46, 250 (1975).
[CrossRef]

Cerny, C. L. A.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

DeSalvo, G. C.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Dettmer, R. W.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Ebel, J. L.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Englund, D.

D. Englund, I. Fushman, and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 12, 5961-5975 (2005).

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwells equations with shifting material boundaries," Phys. Rev. E 65066611 (2002).
[CrossRef]

Fushman, I.

D. Englund, I. Fushman, and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 12, 5961-5975 (2005).

Gillespie, J. K.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Gosele, U.

J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, "Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter," Appl. Phys. Lett. 78, 1180-1182 (2001).
[CrossRef]

Havasy, C. K.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Ibanescu, M.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwells equations with shifting material boundaries," Phys. Rev. E 65066611 (2002).
[CrossRef]

Jacobs, S.

S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B: Lasers Opt. 81, 283-293 (2005).

Jenkins, T. J.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B: Lasers Opt. 81, 283-293 (2005).

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwells equations with shifting material boundaries," Phys. Rev. E 65066611 (2002).
[CrossRef]

Johnson, S. G.

S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B: Lasers Opt. 81, 283-293 (2005).

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwells equations with shifting material boundaries," Phys. Rev. E 65066611 (2002).
[CrossRef]

Karalis, A.

S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B: Lasers Opt. 81, 283-293 (2005).

Look, D. C.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Matthias, S.

J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, "Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter," Appl. Phys. Lett. 78, 1180-1182 (2001).
[CrossRef]

Muller, F.

J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, "Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter," Appl. Phys. Lett. 78, 1180-1182 (2001).
[CrossRef]

Nakano, K.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

Pettiford, C. I.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Povinelli, M. I.

S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B: Lasers Opt. 81, 283-293 (2005).

Quach, T. K.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef]

Schilling, J.

J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, "Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter," Appl. Phys. Lett. 78, 1180-1182 (2001).
[CrossRef]

Sell, D. D.

J. H.C. Casey, D. D. Sell, and K. W. Wecht, "," J. Appl. Phys. 46, 250 (1975).
[CrossRef]

Sewell, J. S.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwells equations with shifting material boundaries," Phys. Rev. E 65066611 (2002).
[CrossRef]

Soljacic, M.

S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B: Lasers Opt. 81, 283-293 (2005).

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

Via, G. D.

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Vuckovic, J.

D. Englund, I. Fushman, and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 12, 5961-5975 (2005).

J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot." Appl. Phys. Lett. 82, 2374-2376 (2003).
[CrossRef]

Vuckovic, J. J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

Vukusic, P.

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

Wecht, K. W.

J. H.C. Casey, D. D. Sell, and K. W. Wecht, "," J. Appl. Phys. 46, 250 (1975).
[CrossRef]

Wehrspohn, R. B.

J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, "Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter," Appl. Phys. Lett. 78, 1180-1182 (2001).
[CrossRef]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwells equations with shifting material boundaries," Phys. Rev. E 65066611 (2002).
[CrossRef]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot." Appl. Phys. Lett. 82, 2374-2376 (2003).
[CrossRef]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

S. G. Johnson, M. I. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B: Lasers Opt. 81, 283-293 (2005).

Appl. Phys. Lett. (2)

J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot." Appl. Phys. Lett. 82, 2374-2376 (2003).
[CrossRef]

J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, "Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter," Appl. Phys. Lett. 78, 1180-1182 (2001).
[CrossRef]

J. Appl. Phys. (1)

J. H.C. Casey, D. D. Sell, and K. W. Wecht, "," J. Appl. Phys. 46, 250 (1975).
[CrossRef]

J. Electrochem. Soc. (1)

G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, "Wet chemical digital etching of GaAs at room temperature," J. Electrochem. Soc. 143, 3652-3656 (1996).
[CrossRef]

Nature (1)

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef]

Opt. Express (1)

D. Englund, I. Fushman, and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 12, 5961-5975 (2005).

Phys. Rev. E (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwells equations with shifting material boundaries," Phys. Rev. E 65066611 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95013904 (2005).
[CrossRef]

Other (4)

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwells Equation and the Schrödinger Equation (Wiley-Interscience Publications, New York, 2001).

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic Crystal waveguides: role of fabrication disorder and photon Group velocity." Phys. Rev. Lett. 94, 033,903-003,904 (2005).

A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B. 72, 153,102- (2005).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics