Abstract

We report on the application of coherent Rayleigh scattering (CRS) to the measurement of temperature in a flame using narrow bandwidth pump and probe fields. High resolution measurements of the line shape were used to derive flame temperature based on fits to the line shape. An uncertainty in the temperature of 3 % was determined utilizing a CRS model that includes scattering from a multi-component gas for the first time. This model was validated at room temperature for a mixture of atomic and molecular species.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Miles and W. R. Lempert “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
    [CrossRef]
  2. R. W. Pitz, R. Cattolica, F. Robben, and L. Talbot, “Temperature and density in a hydrogen-air flame from Rayleigh scattering,” Comb. Flame 27, 313–320 (1976).
    [CrossRef]
  3. G. S. Elliot and T. J. Beutner, “Molecular filter based Doppler velocimetry,” Prog. Aero. Sci. 35, 799–845 (1999).
    [CrossRef]
  4. J. N. Forkey, W. R. Lempert, and R. B. Miles, “Accuracy limits for planar measurements of flow field velocity, temperature and density using filtered Rayleigh scattering.,” Exp. Fluids 24, 151–162 (1998).
    [CrossRef]
  5. J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85, 1222–1225 (2000).
    [CrossRef] [PubMed]
  6. X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
    [CrossRef]
  7. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001(4) (2002)
    [CrossRef] [PubMed]
  8. M. N. Shneider, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (personal communication, 2005).
  9. H. T. Bookey, A. I. Bishop, M. N. Shneider, and P. F. Barker, School of Engineering and Physical Sciences, David Brewster Building, Heriot Watt University, Edinburgh are preparing a manuscript to be called “Narrow-band coherent Rayleigh scattering.”
  10. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering in molecular gases.” Phys. Rev. A 69, 033814 (2004).
    [CrossRef]
  11. P. Ewart, “A modeless, variable bandwidth, tuneable laser,” Opt. Commun. 55, 124–126 (1985).
    [CrossRef]

2004 (1)

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering in molecular gases.” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

2002 (2)

2000 (1)

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85, 1222–1225 (2000).
[CrossRef] [PubMed]

1999 (1)

G. S. Elliot and T. J. Beutner, “Molecular filter based Doppler velocimetry,” Prog. Aero. Sci. 35, 799–845 (1999).
[CrossRef]

1998 (1)

J. N. Forkey, W. R. Lempert, and R. B. Miles, “Accuracy limits for planar measurements of flow field velocity, temperature and density using filtered Rayleigh scattering.,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

1997 (1)

R. B. Miles and W. R. Lempert “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

1985 (1)

P. Ewart, “A modeless, variable bandwidth, tuneable laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

1976 (1)

R. W. Pitz, R. Cattolica, F. Robben, and L. Talbot, “Temperature and density in a hydrogen-air flame from Rayleigh scattering,” Comb. Flame 27, 313–320 (1976).
[CrossRef]

Barker, P. F.

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
[CrossRef]

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85, 1222–1225 (2000).
[CrossRef] [PubMed]

H. T. Bookey, A. I. Bishop, M. N. Shneider, and P. F. Barker, School of Engineering and Physical Sciences, David Brewster Building, Heriot Watt University, Edinburgh are preparing a manuscript to be called “Narrow-band coherent Rayleigh scattering.”

Beutner, T. J.

G. S. Elliot and T. J. Beutner, “Molecular filter based Doppler velocimetry,” Prog. Aero. Sci. 35, 799–845 (1999).
[CrossRef]

Bishop, A. I.

H. T. Bookey, A. I. Bishop, M. N. Shneider, and P. F. Barker, School of Engineering and Physical Sciences, David Brewster Building, Heriot Watt University, Edinburgh are preparing a manuscript to be called “Narrow-band coherent Rayleigh scattering.”

Bookey, H. T.

H. T. Bookey, A. I. Bishop, M. N. Shneider, and P. F. Barker, School of Engineering and Physical Sciences, David Brewster Building, Heriot Watt University, Edinburgh are preparing a manuscript to be called “Narrow-band coherent Rayleigh scattering.”

Cattolica, R.

R. W. Pitz, R. Cattolica, F. Robben, and L. Talbot, “Temperature and density in a hydrogen-air flame from Rayleigh scattering,” Comb. Flame 27, 313–320 (1976).
[CrossRef]

Elliot, G. S.

G. S. Elliot and T. J. Beutner, “Molecular filter based Doppler velocimetry,” Prog. Aero. Sci. 35, 799–845 (1999).
[CrossRef]

Ewart, P.

P. Ewart, “A modeless, variable bandwidth, tuneable laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

Forkey, J. N.

J. N. Forkey, W. R. Lempert, and R. B. Miles, “Accuracy limits for planar measurements of flow field velocity, temperature and density using filtered Rayleigh scattering.,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

Grinstead, J. H.

Lempert, W. R.

J. N. Forkey, W. R. Lempert, and R. B. Miles, “Accuracy limits for planar measurements of flow field velocity, temperature and density using filtered Rayleigh scattering.,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

R. B. Miles and W. R. Lempert “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

Meschanov, A.

Miles, R. B.

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering in molecular gases.” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001(4) (2002)
[CrossRef] [PubMed]

J. N. Forkey, W. R. Lempert, and R. B. Miles, “Accuracy limits for planar measurements of flow field velocity, temperature and density using filtered Rayleigh scattering.,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

R. B. Miles and W. R. Lempert “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

Pan, X.

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering in molecular gases.” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001(4) (2002)
[CrossRef] [PubMed]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
[CrossRef]

Pitz, R. W.

R. W. Pitz, R. Cattolica, F. Robben, and L. Talbot, “Temperature and density in a hydrogen-air flame from Rayleigh scattering,” Comb. Flame 27, 313–320 (1976).
[CrossRef]

Robben, F.

R. W. Pitz, R. Cattolica, F. Robben, and L. Talbot, “Temperature and density in a hydrogen-air flame from Rayleigh scattering,” Comb. Flame 27, 313–320 (1976).
[CrossRef]

Shneider, M. N.

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering in molecular gases.” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001(4) (2002)
[CrossRef] [PubMed]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27, 161–163 (2002).
[CrossRef]

M. N. Shneider, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (personal communication, 2005).

H. T. Bookey, A. I. Bishop, M. N. Shneider, and P. F. Barker, School of Engineering and Physical Sciences, David Brewster Building, Heriot Watt University, Edinburgh are preparing a manuscript to be called “Narrow-band coherent Rayleigh scattering.”

Talbot, L.

R. W. Pitz, R. Cattolica, F. Robben, and L. Talbot, “Temperature and density in a hydrogen-air flame from Rayleigh scattering,” Comb. Flame 27, 313–320 (1976).
[CrossRef]

Annu. Rev. Fluid Mech. (1)

R. B. Miles and W. R. Lempert “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

Comb. Flame (1)

R. W. Pitz, R. Cattolica, F. Robben, and L. Talbot, “Temperature and density in a hydrogen-air flame from Rayleigh scattering,” Comb. Flame 27, 313–320 (1976).
[CrossRef]

Exp. Fluids (1)

J. N. Forkey, W. R. Lempert, and R. B. Miles, “Accuracy limits for planar measurements of flow field velocity, temperature and density using filtered Rayleigh scattering.,” Exp. Fluids 24, 151–162 (1998).
[CrossRef]

Opt. Commun. (1)

P. Ewart, “A modeless, variable bandwidth, tuneable laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering in molecular gases.” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001(4) (2002)
[CrossRef] [PubMed]

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85, 1222–1225 (2000).
[CrossRef] [PubMed]

Prog. Aero. Sci. (1)

G. S. Elliot and T. J. Beutner, “Molecular filter based Doppler velocimetry,” Prog. Aero. Sci. 35, 799–845 (1999).
[CrossRef]

Other (2)

M. N. Shneider, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (personal communication, 2005).

H. T. Bookey, A. I. Bishop, M. N. Shneider, and P. F. Barker, School of Engineering and Physical Sciences, David Brewster Building, Heriot Watt University, Edinburgh are preparing a manuscript to be called “Narrow-band coherent Rayleigh scattering.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the coherent Rayleigh scattering system used to measure the temperature of a butane-air flame. BS ‒ beamsplitter.

Fig. 2.
Fig. 2.

Measured CRS spectral profiles from 100 mbar mixtures of N2 and Xe with the corresponding modeled data at 298 K. A good fit with the multi-component model was found for all mixtures.

Fig. 3.
Fig. 3.

CRS signal taken from a butane-air flame as a function of pump laser frequency difference. Also shown is the best fit from the model that gives a flame temperature of 1740 K.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I 4 ~ L 2 δ ρ 2 I 1 I 2 I 3 ,
δρ = i = 1 n ρ i 0 2 π q δ f i dxdν
y = 1 2 ( k b T M ) 1 2 ( 1 )
δ f i x ν t = α i E 1 E 2 k b T f 0 , i [ cos ( qx Ω t ) cos ( qx qνt ) ] Ω ,
T m = ( Δ υ m Δ υ s ) 2 T s

Metrics