Abstract

This paper reports the first demonstration of the generation and distribution of time-bin entangled photon pairs in the 1.5-μm band using spontaneous four-wave mixing in a cooled fiber. Noise photons induced by spontaneous Raman scattering were suppressed by cooling a dispersion shifted fiber with liquid nitrogen, which resulted in a significant improvement in the visibility of two-photon interference. By using this scheme, time-bin entangled qubits were successfully distributed over 60 km of optical fiber with a visibility of 76%, which was obtained without removing accidental coincidences.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
    [CrossRef]
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
    [CrossRef] [PubMed]
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
    [CrossRef] [PubMed]
  5. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [CrossRef]
  6. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  7. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–776 (1999).
    [CrossRef]
  8. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  9. H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequatilty using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A,  70, 031802(R) (2004).
    [CrossRef]
  10. H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).
    [CrossRef]
  11. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
    [CrossRef] [PubMed]
  12. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [CrossRef] [PubMed]
  13. J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 3368–3370 (2005).
    [CrossRef]
  14. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
    [CrossRef] [PubMed]
  15. K. Inoue and K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering,” Jpn. J. Appl. Phys. 43, 8048–8052 (2004).
    [CrossRef]
  16. H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
    [CrossRef] [PubMed]
  17. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “High-purity telecom-band entangled photon-pairs via four-wave mixing in dispersion-shifted fiber,” postdeadline paper presented at the Frontiers in Optics 2005-the 89th OSA Annual Meeting, Tucson, AZ, October 16-20, 2005;paper PDP-A4.
  18. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
    [CrossRef]
  19. I. Marcikic, H. de Reidmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
    [CrossRef] [PubMed]
  20. M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Progress in Optics 28, 181–270 (1990).
    [CrossRef]
  21. The unit of ns and nas is determined by that of the pump photon number: for example, if the pump photon number is defined per pulse, ns and nas denote the number of Stokes and anti-Stokes photons per pump pulse.
  22. G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995).
  23. T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
    [CrossRef] [PubMed]
  24. Exactly speaking, μi was set at the same value in both cases, and μs for the cooled fiber was slightly smaller than that for the uncooled fiber. This is because, according to Eqs. (1) and (2), the difference between Raman gain coefficients for the Stokes and anti-Stokes processes increases slightly as the fiber is cooled.
  25. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization and utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
    [CrossRef]
  26. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [CrossRef]
  27. P. G. Kwiat, A. M. Steinberg, and R. Y. Chao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
    [CrossRef]

2005 (6)

2004 (5)

I. Marcikic, H. de Reidmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

K. Inoue and K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering,” Jpn. J. Appl. Phys. 43, 8048–8052 (2004).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequatilty using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A,  70, 031802(R) (2004).
[CrossRef]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
[CrossRef] [PubMed]

2001 (1)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

1999 (3)

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization and utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–776 (1999).
[CrossRef]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[CrossRef]

1998 (1)

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

1993 (2)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[CrossRef]

1992 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

1990 (1)

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Progress in Optics 28, 181–270 (1990).
[CrossRef]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995).

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–776 (1999).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[CrossRef]

Briegel, H. J.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Chao, R. Y.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[CrossRef]

Chen, J.

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “High-purity telecom-band entangled photon-pairs via four-wave mixing in dispersion-shifted fiber,” postdeadline paper presented at the Frontiers in Optics 2005-the 89th OSA Annual Meeting, Tucson, AZ, October 16-20, 2005;paper PDP-A4.

Cirac, J. I.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

Duligall, J.

Dur, W.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–776 (1999).
[CrossRef]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization and utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[CrossRef]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Fan, J.

Fulconis, J.

Gisin, N.

I. Marcikic, H. de Reidmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[CrossRef]

Honjo, T.

Inoue, K.

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequatilty using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A,  70, 031802(R) (2004).
[CrossRef]

K. Inoue and K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering,” Jpn. J. Appl. Phys. 43, 8048–8052 (2004).
[CrossRef]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
[CrossRef] [PubMed]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization and utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “High-purity telecom-band entangled photon-pairs via four-wave mixing in dispersion-shifted fiber,” postdeadline paper presented at the Frontiers in Optics 2005-the 89th OSA Annual Meeting, Tucson, AZ, October 16-20, 2005;paper PDP-A4.

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization and utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–776 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[CrossRef]

Lee, K. F.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “High-purity telecom-band entangled photon-pairs via four-wave mixing in dispersion-shifted fiber,” postdeadline paper presented at the Frontiers in Optics 2005-the 89th OSA Annual Meeting, Tucson, AZ, October 16-20, 2005;paper PDP-A4.

Legre, M.

I. Marcikic, H. de Reidmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “High-purity telecom-band entangled photon-pairs via four-wave mixing in dispersion-shifted fiber,” postdeadline paper presented at the Frontiers in Optics 2005-the 89th OSA Annual Meeting, Tucson, AZ, October 16-20, 2005;paper PDP-A4.

Liang, C.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “High-purity telecom-band entangled photon-pairs via four-wave mixing in dispersion-shifted fiber,” postdeadline paper presented at the Frontiers in Optics 2005-the 89th OSA Annual Meeting, Tucson, AZ, October 16-20, 2005;paper PDP-A4.

Marcikic, I.

I. Marcikic, H. de Reidmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Migdall, A.

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Rarity, J. G.

Raymer, M. G.

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Progress in Optics 28, 181–270 (1990).
[CrossRef]

Reidmatten, H. de

I. Marcikic, H. de Reidmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Russell, P. St. J.

Sharping, J.

Sharping, J. E.

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Shimizu, K.

K. Inoue and K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering,” Jpn. J. Appl. Phys. 43, 8048–8052 (2004).
[CrossRef]

Steinberg, A. M.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[CrossRef]

Takahashi, H.

Takesue, H.

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequatilty using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A,  70, 031802(R) (2004).
[CrossRef]

Tittel, W.

I. Marcikic, H. de Reidmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[CrossRef]

Voss, P.

Voss, P. L.

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “High-purity telecom-band entangled photon-pairs via four-wave mixing in dispersion-shifted fiber,” postdeadline paper presented at the Frontiers in Optics 2005-the 89th OSA Annual Meeting, Tucson, AZ, October 16-20, 2005;paper PDP-A4.

Wadsworth, W. J.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–776 (1999).
[CrossRef]

Walmsley, I. A.

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Progress in Optics 28, 181–270 (1990).
[CrossRef]

Wang, L. J.

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization and utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–776 (1999).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

Zbinden, H.

I. Marcikic, H. de Reidmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[CrossRef]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Zoller, P.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Inoue and K. Shimizu, “Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering,” Jpn. J. Appl. Phys. 43, 8048–8052 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Phys. Rev. A (5)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–776 (1999).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequatilty using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A,  70, 031802(R) (2004).
[CrossRef]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[CrossRef]

Phys. Rev. Lett. (9)

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization and utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[CrossRef]

I. Marcikic, H. de Reidmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Progress in Optics (1)

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Progress in Optics 28, 181–270 (1990).
[CrossRef]

Other (4)

The unit of ns and nas is determined by that of the pump photon number: for example, if the pump photon number is defined per pulse, ns and nas denote the number of Stokes and anti-Stokes photons per pump pulse.

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995).

Exactly speaking, μi was set at the same value in both cases, and μs for the cooled fiber was slightly smaller than that for the uncooled fiber. This is because, according to Eqs. (1) and (2), the difference between Raman gain coefficients for the Stokes and anti-Stokes processes increases slightly as the fiber is cooled.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “High-purity telecom-band entangled photon-pairs via four-wave mixing in dispersion-shifted fiber,” postdeadline paper presented at the Frontiers in Optics 2005-the 89th OSA Annual Meeting, Tucson, AZ, October 16-20, 2005;paper PDP-A4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Two-photon interference fringes when the DSF was (a) at room temperature and (b) in liquid nitrogen.

Fig. 3.
Fig. 3.

Two-photon interference fringe and idler count rate after transmission over 60-km fiber. Squares: coincidence rate per start pulse, x symbols: idler count rate.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n s ( T ) = gL e αL 1 exp ( k B T ) ,
n as ( T ) = gL e αL exp ( k B T ) 1 ,
Ψ = 1 2 ( 1 s 1 i + e 2 s 2 i )
k x 1 2 ( k , a x k , b x + e i θ x k + 1 , a x + e i θ x k + 1 , b x )
Ψ 1 4 2 { 1 , a s 1 , a i 1 , a s 1 , b i
1 , b s 1 , a i + 1 , b s 1 , b i
+ ( e + e ) 2 , a s 2 , a i + ( e e ) 2 , a s 2 , b i
+ ( e e ) 2 , b s 2 , a i + ( e + e ) 2 , b s 2 , b i
e i ( ϕ + θ ) 3 , a s 3 , a i + e i ( ϕ + θ ) 3 , a s 3 , b i
+ e i ( ϕ + θ ) 3 , b s 3 , a i + e i ( ϕ + θ ) 3 , b s 3 , b i
+ } ,
R c = μ c 4 α s α i ,
R acc = ( μ s α s 2 + d s ) · ( μ i α i 2 + d i ) μ s μ i 4 α s α i ,
μ x = μ c + μ nx .
V = R c R c + 2 R acc μ c μ c + 2 μ s μ n .
T 1 = T 0 1 + ( z β 2 T 0 2 ) 2 ,

Metrics