Abstract

We experimentally compare output performance between laser beam (erbium fiber ring laser) and amplified spontaneous emission (ASE) beam (erbium fiber ASE) driven supercontinuums (SCs) in terms of seed beam temporal coherence. We control the degree of temporal coherence of the seed beams by using an optical filter to change their spectral linewidth. The random phase ASE driven SC is found to have better performance than the phase-correlated laser driven SC in terms of spectral smoothness and output power. Significantly high relative-intensity-noise in the output SCs is observed for both cases, i.e. the laser driven SC and the ASE driven SC irrespective of the seed beam temporal coherence due to the nonlinear amplification of quantum fluctuations both in the input pump beam and in the Raman scattering process.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Mori, K. Sato, H. Takara, and T. Ohara, "Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands," Electron. Lett. 39, 544-546 (2003).
    [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  3. K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, M. F. Yan, "Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser," Opt. Lett. 30, 932-934 (2005)
    [CrossRef] [PubMed]
  4. H. Kano and H. Hamaguchi, "Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy," Opt. Lett. 28, 2360-2362 (2003).
    [CrossRef] [PubMed]
  5. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  6. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Technol. 23, 13-18 (2005).
    [CrossRef]
  7. M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys. 39, L291-L293 (2000).
    [CrossRef]
  8. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
    [CrossRef] [PubMed]
  9. A. K. Abeeluck, C. Headley, and C. G. J Ørgensen, "High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
    [CrossRef] [PubMed]
  10. S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
    [CrossRef] [PubMed]
  11. J. H. Lee, Y. Takushima, and K. Kikuchi, "Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber," Opt. Lett. 30, 2599-2602 (2005).
    [CrossRef] [PubMed]
  12. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characterisitcs of continuous-wave-pumped continumm generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706-2708 (2004).
    [CrossRef]
  13. A. K. Abeeluck and C. Headley, "Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode," Appl. Phys. Lett. 85, 4863-4865 (2004).
    [CrossRef]
  14. P. A. Champert, V. Couderc, and A. Barthelemy, "1.5-2.0 μm multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source," IEEE Photon. Technol. Lett. 16, pp.2445-2447 (2004).
    [CrossRef]
  15. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience,1991), 344-359.
  16. M. Nakazawa, H. Kubota, and K. Tamura, "Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise," Opt. Lett. 24,318-320 (1999).
    [CrossRef]
  17. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  18. G. J. Pendock and D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems," J. Lightwave Technol. 14, 2141-2148 (1996)
    [CrossRef]

2005 (4)

2004 (4)

A. K. Abeeluck, C. Headley, and C. G. J Ørgensen, "High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
[CrossRef] [PubMed]

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characterisitcs of continuous-wave-pumped continumm generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706-2708 (2004).
[CrossRef]

A. K. Abeeluck and C. Headley, "Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode," Appl. Phys. Lett. 85, 4863-4865 (2004).
[CrossRef]

P. A. Champert, V. Couderc, and A. Barthelemy, "1.5-2.0 μm multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source," IEEE Photon. Technol. Lett. 16, pp.2445-2447 (2004).
[CrossRef]

2003 (4)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

K. Mori, K. Sato, H. Takara, and T. Ohara, "Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands," Electron. Lett. 39, 544-546 (2003).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, "Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy," Opt. Lett. 28, 2360-2362 (2003).
[CrossRef] [PubMed]

2001 (2)

2000 (1)

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys. 39, L291-L293 (2000).
[CrossRef]

1999 (1)

1996 (1)

G. J. Pendock and D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems," J. Lightwave Technol. 14, 2141-2148 (1996)
[CrossRef]

Abeeluck, A. K.

A. K. Abeeluck and C. Headley, "Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode," Appl. Phys. Lett. 85, 4863-4865 (2004).
[CrossRef]

A. K. Abeeluck, C. Headley, and C. G. J Ørgensen, "High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
[CrossRef] [PubMed]

Avdokhin, A. V.

Barthelemy, A.

P. A. Champert, V. Couderc, and A. Barthelemy, "1.5-2.0 μm multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source," IEEE Photon. Technol. Lett. 16, pp.2445-2447 (2004).
[CrossRef]

Champert, P. A.

P. A. Champert, V. Couderc, and A. Barthelemy, "1.5-2.0 μm multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source," IEEE Photon. Technol. Lett. 16, pp.2445-2447 (2004).
[CrossRef]

Chau, A. H. L.

Chudoba, C.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Couderc, V.

P. A. Champert, V. Couderc, and A. Barthelemy, "1.5-2.0 μm multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source," IEEE Photon. Technol. Lett. 16, pp.2445-2447 (2004).
[CrossRef]

de Matos, C. J. S.

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characterisitcs of continuous-wave-pumped continumm generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706-2708 (2004).
[CrossRef]

Diddams, S. A.

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, M. F. Yan, "Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser," Opt. Lett. 30, 932-934 (2005)
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Feder, K. S.

Fujimoto, J. G.

Ghanta, R. K.

Hamaguchi, H.

Hartl, I.

Harvey, J. D.

Headley, C.

A. K. Abeeluck and C. Headley, "Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode," Appl. Phys. Lett. 85, 4863-4865 (2004).
[CrossRef]

A. K. Abeeluck, C. Headley, and C. G. J Ørgensen, "High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
[CrossRef] [PubMed]

Hollberg, L.

Kano, H.

Kikuchi, K.

Kim, K.

Kim, N. S.

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys. 39, L291-L293 (2000).
[CrossRef]

Knight, J. C.

Ko, T. H.

Kobtsev, S. M.

Kubota, H.

Lee, J. H.

Leonhardt, R.

Li, X. D.

Mori, K.

K. Mori, K. Sato, H. Takara, and T. Ohara, "Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands," Electron. Lett. 39, 544-546 (2003).
[CrossRef]

Nakazawa, M.

Newbury, N. R.

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, M. F. Yan, "Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser," Opt. Lett. 30, 932-934 (2005)
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Nicholson, J. W.

Oates, C. W.

Ohara, T.

K. Mori, K. Sato, H. Takara, and T. Ohara, "Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands," Electron. Lett. 39, 544-546 (2003).
[CrossRef]

Ørgensen, C. G. J

Pendock, G. J.

G. J. Pendock and D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems," J. Lightwave Technol. 14, 2141-2148 (1996)
[CrossRef]

Popov, S. V.

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characterisitcs of continuous-wave-pumped continumm generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706-2708 (2004).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

Prabhu, M.

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys. 39, L291-L293 (2000).
[CrossRef]

Ranka, J. K.

Russell, P. St. J.

Sampson, D. D.

G. J. Pendock and D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems," J. Lightwave Technol. 14, 2141-2148 (1996)
[CrossRef]

Sato, K.

K. Mori, K. Sato, H. Takara, and T. Ohara, "Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands," Electron. Lett. 39, 544-546 (2003).
[CrossRef]

Smirnov, S. V.

Takara, H.

K. Mori, K. Sato, H. Takara, and T. Ohara, "Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands," Electron. Lett. 39, 544-546 (2003).
[CrossRef]

Takushima, Y.

Tamura, K.

Taylor, J. R.

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characterisitcs of continuous-wave-pumped continumm generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706-2708 (2004).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

Ueda, K.

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys. 39, L291-L293 (2000).
[CrossRef]

Wadsworth, W. J.

Washburn, B. R.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Westbrook, P. S.

Wilpers, G.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

Yablon, A. D.

Yan, M. F.

Appl. Phys. Lett. (2)

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characterisitcs of continuous-wave-pumped continumm generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706-2708 (2004).
[CrossRef]

A. K. Abeeluck and C. Headley, "Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode," Appl. Phys. Lett. 85, 4863-4865 (2004).
[CrossRef]

Electron. Lett. (1)

K. Mori, K. Sato, H. Takara, and T. Ohara, "Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands," Electron. Lett. 39, 544-546 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. A. Champert, V. Couderc, and A. Barthelemy, "1.5-2.0 μm multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source," IEEE Photon. Technol. Lett. 16, pp.2445-2447 (2004).
[CrossRef]

J. Lightwave Technol. (2)

G. J. Pendock and D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems," J. Lightwave Technol. 14, 2141-2148 (1996)
[CrossRef]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Technol. 23, 13-18 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys. 39, L291-L293 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

J. H. Lee, Y. Takushima, and K. Kikuchi, "Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber," Opt. Lett. 30, 2599-2602 (2005).
[CrossRef] [PubMed]

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, M. F. Yan, "Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser," Opt. Lett. 30, 932-934 (2005)
[CrossRef] [PubMed]

M. Nakazawa, H. Kubota, and K. Tamura, "Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise," Opt. Lett. 24,318-320 (1999).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, "Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy," Opt. Lett. 28, 2360-2362 (2003).
[CrossRef] [PubMed]

A. K. Abeeluck, C. Headley, and C. G. J Ørgensen, "High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Other (1)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience,1991), 344-359.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental schematic for continuous wave supercontinuum generation with two different seed light sources: erbium doped fiber based ring laser and spectrum sliced erbium ASE.

Fig. 2.
Fig. 2.

Measured output optical spectra of the erbium fiber ring laser for various filter bandwidths and that for no filter inserted.

Fig. 3.
Fig. 3.

Measured output optical spectra of the erbium fiber ASE for various filter bandwidths and that for no filter inserted.

Fig. 4.
Fig. 4.

Measured output spectra versus the 1480-nm pump power of the power amplifier for various temporal coherence times in the ring laser driven SC.

Fig. 5.
Fig. 5.

Measured output spectra versus the 1480-nm pump power of the power amplifier for various temporal coherence times in the ASE driven SC.

Fig. 6.
Fig. 6.

Measured output power of (a) the ring laser driven SC and (b) the ASE driven SC versus the 1480-nm pump power of the power amplifier for various temporal coherence times.

Fig. 7.
Fig. 7.

Measured RIN spectra for (a) the ring laser driven SC and (b) the ASE driven SC.

Tables (1)

Tables Icon

Table 1. Temporal Coherence Time (τc ) of the Seed Sources

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν c = ( 0 S ( ν ) ) 2 0 S 2 ( ν )
τ c = 1 Δ ν c

Metrics