Abstract

Optical metamaterials with a negative value of the refractive index can be fabricated by means of patterning techniques developed for microelectronics. One of those is a layered metamaterial, where the electric and magnetic response comes from coupled parallel subwavelength size wires. We simulate propagation of EM waves through such a metamaterial. Its properties depend on the density of pairs of nanowires oriented in parallel in one layer. There is a tradeoff between high transmittance and large negative refractive index value n. The smaller is the density of nanowires; 1° – the narrower the range of frequencies, where n is negative; 2° – the less negative is n; 3° – the higher is the transmission.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1999).
    [CrossRef]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [CrossRef] [PubMed]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metameterials,” Opt. Lett. 30, 3356–3358 (2005).
    [CrossRef]
  5. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, and C. M. Soukoulis, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
    [CrossRef] [PubMed]
  6. Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, “Nanoimprint and soft lithography for planar photonic meta-materials,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 96–103 (2005).
    [CrossRef]
  7. A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
    [CrossRef]
  8. A. K. Sarychev, R. C. McPhedran, and V. M. Shalaev, “Electrodynamics of metal-dielectric composites and electromagnetic crystals,” Phys. Rev. B 62, 8531–8539 (2000).
    [CrossRef]
  9. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and lefthanded materials,” J. Nonlinear Opt. Phys. Materials 11, 65(2002).
    [CrossRef]
  10. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-735
    [CrossRef] [PubMed]
  11. Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
    [CrossRef]
  12. T. J. Antosiewicz, W. M. Saj, J. Pniewski, and T. Szoplik, “Simulation of resonant behavior and negative refraction of metal nanowire composites,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 109–115 (2005).
  13. F. Garwe, U. Huebner, T. Clausnitzer, E.-B. Kley, and U. Bauerschaefer, “Elongated gold nanostructures in silica for metamaterials: Technology and optical properties,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 185–192 (2005).
  14. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using short wire pairs,” Phys. Rev. B, 73, 041101 (2006).
    [CrossRef]
  15. A. Taflove and S. C. Hagnes, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artec House, Norwood, MA2000).
  16. W. M. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice,” Opt. Express 13, 4818–4827 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4818
    [CrossRef] [PubMed]
  17. C. SÖnnichsen, Plasmons in metal nanostructures, PhD Thesis (Ludwig-Maximilians-Universtät München, München,2001).
  18. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  19. R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–316 (2004).
    [CrossRef]
  20. H. Raether, Surface Plasmons (Springer, Berlin1988).

2006 (1)

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using short wire pairs,” Phys. Rev. B, 73, 041101 (2006).
[CrossRef]

2005 (6)

W. M. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice,” Opt. Express 13, 4818–4827 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4818
[CrossRef] [PubMed]

T. J. Antosiewicz, W. M. Saj, J. Pniewski, and T. Szoplik, “Simulation of resonant behavior and negative refraction of metal nanowire composites,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 109–115 (2005).

F. Garwe, U. Huebner, T. Clausnitzer, E.-B. Kley, and U. Bauerschaefer, “Elongated gold nanostructures in silica for metamaterials: Technology and optical properties,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 185–192 (2005).

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metameterials,” Opt. Lett. 30, 3356–3358 (2005).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, and C. M. Soukoulis, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
[CrossRef] [PubMed]

Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, “Nanoimprint and soft lithography for planar photonic meta-materials,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 96–103 (2005).
[CrossRef]

2004 (1)

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–316 (2004).
[CrossRef]

2003 (1)

2002 (1)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and lefthanded materials,” J. Nonlinear Opt. Phys. Materials 11, 65(2002).
[CrossRef]

2001 (1)

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[CrossRef]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

A. K. Sarychev, R. C. McPhedran, and V. M. Shalaev, “Electrodynamics of metal-dielectric composites and electromagnetic crystals,” Phys. Rev. B 62, 8531–8539 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1999).
[CrossRef]

1996 (1)

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Antosiewicz, T. J.

T. J. Antosiewicz, W. M. Saj, J. Pniewski, and T. Szoplik, “Simulation of resonant behavior and negative refraction of metal nanowire composites,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 109–115 (2005).

Bauerschaefer, U.

F. Garwe, U. Huebner, T. Clausnitzer, E.-B. Kley, and U. Bauerschaefer, “Elongated gold nanostructures in silica for metamaterials: Technology and optical properties,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 185–192 (2005).

Cai, W.

Chen, Y.

Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, “Nanoimprint and soft lithography for planar photonic meta-materials,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 96–103 (2005).
[CrossRef]

Chettiar, U. K.

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Clausnitzer, T.

F. Garwe, U. Huebner, T. Clausnitzer, E.-B. Kley, and U. Bauerschaefer, “Elongated gold nanostructures in silica for metamaterials: Technology and optical properties,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 185–192 (2005).

Cui, Z.

Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, “Nanoimprint and soft lithography for planar photonic meta-materials,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 96–103 (2005).
[CrossRef]

Depine, R. A.

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–316 (2004).
[CrossRef]

Dolling, G.

Drachev, V. P.

Enkrich, C.

Garwe, F.

F. Garwe, U. Huebner, T. Clausnitzer, E.-B. Kley, and U. Bauerschaefer, “Elongated gold nanostructures in silica for metamaterials: Technology and optical properties,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 185–192 (2005).

Hagnes, S. C.

A. Taflove and S. C. Hagnes, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artec House, Norwood, MA2000).

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1999).
[CrossRef]

Huebner, U.

F. Garwe, U. Huebner, T. Clausnitzer, E.-B. Kley, and U. Bauerschaefer, “Elongated gold nanostructures in silica for metamaterials: Technology and optical properties,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 185–192 (2005).

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kildishev, A. V.

Kley, E.-B.

F. Garwe, U. Huebner, T. Clausnitzer, E.-B. Kley, and U. Bauerschaefer, “Elongated gold nanostructures in silica for metamaterials: Technology and optical properties,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 185–192 (2005).

Koschny, T.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using short wire pairs,” Phys. Rev. B, 73, 041101 (2006).
[CrossRef]

Lagarkov, A. N.

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
[CrossRef]

Lakhtakia, A.

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–316 (2004).
[CrossRef]

McPhedran, R. C.

A. K. Sarychev, R. C. McPhedran, and V. M. Shalaev, “Electrodynamics of metal-dielectric composites and electromagnetic crystals,” Phys. Rev. B 62, 8531–8539 (2000).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Osipov, M.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1999).
[CrossRef]

Pniewski, J.

T. J. Antosiewicz, W. M. Saj, J. Pniewski, and T. Szoplik, “Simulation of resonant behavior and negative refraction of metal nanowire composites,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 109–115 (2005).

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-735
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and lefthanded materials,” J. Nonlinear Opt. Phys. Materials 11, 65(2002).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer, Berlin1988).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1999).
[CrossRef]

Saj, W. M.

W. M. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice,” Opt. Express 13, 4818–4827 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4818
[CrossRef] [PubMed]

T. J. Antosiewicz, W. M. Saj, J. Pniewski, and T. Szoplik, “Simulation of resonant behavior and negative refraction of metal nanowire composites,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 109–115 (2005).

Sarychev, A. K.

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metameterials,” Opt. Lett. 30, 3356–3358 (2005).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-735
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and lefthanded materials,” J. Nonlinear Opt. Phys. Materials 11, 65(2002).
[CrossRef]

A. K. Sarychev, R. C. McPhedran, and V. M. Shalaev, “Electrodynamics of metal-dielectric composites and electromagnetic crystals,” Phys. Rev. B 62, 8531–8539 (2000).
[CrossRef]

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Schwanecke, A. S.

Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, “Nanoimprint and soft lithography for planar photonic meta-materials,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 96–103 (2005).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metameterials,” Opt. Lett. 30, 3356–3358 (2005).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-735
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and lefthanded materials,” J. Nonlinear Opt. Phys. Materials 11, 65(2002).
[CrossRef]

A. K. Sarychev, R. C. McPhedran, and V. M. Shalaev, “Electrodynamics of metal-dielectric composites and electromagnetic crystals,” Phys. Rev. B 62, 8531–8539 (2000).
[CrossRef]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

SÖnnichsen, C.

C. SÖnnichsen, Plasmons in metal nanostructures, PhD Thesis (Ludwig-Maximilians-Universtät München, München,2001).

Soukoulis, C. M.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using short wire pairs,” Phys. Rev. B, 73, 041101 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, and C. M. Soukoulis, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1999).
[CrossRef]

Svirko, Y.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[CrossRef]

Szoplik, T.

T. J. Antosiewicz, W. M. Saj, J. Pniewski, and T. Szoplik, “Simulation of resonant behavior and negative refraction of metal nanowire composites,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 109–115 (2005).

Taflove, A.

A. Taflove and S. C. Hagnes, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artec House, Norwood, MA2000).

Tao, J.

Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, “Nanoimprint and soft lithography for planar photonic meta-materials,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 96–103 (2005).
[CrossRef]

Tuttle, G.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using short wire pairs,” Phys. Rev. B, 73, 041101 (2006).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Wegener, M.

Yuan, H. K.

Zhang, L.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using short wire pairs,” Phys. Rev. B, 73, 041101 (2006).
[CrossRef]

Zhao, X.

Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, “Nanoimprint and soft lithography for planar photonic meta-materials,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 96–103 (2005).
[CrossRef]

Zheludev, N.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[CrossRef]

Zheludev, N. I.

Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, “Nanoimprint and soft lithography for planar photonic meta-materials,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 96–103 (2005).
[CrossRef]

Zhou, J.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using short wire pairs,” Phys. Rev. B, 73, 041101 (2006).
[CrossRef]

Zhou, J. F.

Appl. Phys. Lett. (1)

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78, 498–500 (2001).
[CrossRef]

J. Nonlinear Opt. Phys. Materials (1)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and lefthanded materials,” J. Nonlinear Opt. Phys. Materials 11, 65(2002).
[CrossRef]

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1999).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315–316 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (3)

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318–6336 (1996).
[CrossRef]

A. K. Sarychev, R. C. McPhedran, and V. M. Shalaev, “Electrodynamics of metal-dielectric composites and electromagnetic crystals,” Phys. Rev. B 62, 8531–8539 (2000).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. B, (1)

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using short wire pairs,” Phys. Rev. B, 73, 041101 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Proc. SPIE (3)

Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, “Nanoimprint and soft lithography for planar photonic meta-materials,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 96–103 (2005).
[CrossRef]

T. J. Antosiewicz, W. M. Saj, J. Pniewski, and T. Szoplik, “Simulation of resonant behavior and negative refraction of metal nanowire composites,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 109–115 (2005).

F. Garwe, U. Huebner, T. Clausnitzer, E.-B. Kley, and U. Bauerschaefer, “Elongated gold nanostructures in silica for metamaterials: Technology and optical properties,” in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, and N. I. Zheludev; Eds., Proc. SPIE 5955, 185–192 (2005).

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Other (3)

C. SÖnnichsen, Plasmons in metal nanostructures, PhD Thesis (Ludwig-Maximilians-Universtät München, München,2001).

A. Taflove and S. C. Hagnes, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artec House, Norwood, MA2000).

H. Raether, Surface Plasmons (Springer, Berlin1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Theoretical dispersion curves for a single layer of the metamaterial with a fill factor of p = 12%: (a) permittivity, (b) permeability, (c) refractive index.

Fig. 2.
Fig. 2.

Attenuation by a single metamaterial layer.

Fig. 3.
Fig. 3.

Intensity distribution behind wire pairs recalls Talbot effect, p = 16%, λ = 0.85μm.

Fig. 4.
Fig. 4.

Attenuation by three layers for three fill factors and four distances between the layers.

Fig. 5.
Fig. 5.

Phase shifts of plane waves passing through a single metamaterial layer.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε ω p 2 [ ω + i Γ ] 1
ε ( ω ) = p + ( 1 p ) ε f + 8 pbf ( Δ ) ε m G 3 i ( tan G G ) ,
μ ( ω ) = 1 + pa ε d k 2 lbg 3 ln ( ab 1 ) ( tan gl gl )
f ( Δ ) = 1 i Δ J 1 [ ( 1 + i ) Δ ] J 0 [ ( 1 + i ) Δ ] with Δ = b σ m ω μ 0 μ m 2 ,
= f ( Δ ) ε m ε d ( b l ) 2 ln ( 1 + d b )
g = k d 2 Δ 2 f ( Δ ) ln ( ab 1 ) + ε d , Ω 2 = ε d ( lk ) 2 ln ( lb 1 ) + i ε d kl ln ( 1 + d b 1 ) ,

Metrics