Abstract

A novel continuous phase-only sampling function capable of producing up to 81-channel FBG with excellent channel uniformity and high in-band energy efficiency is presented and optimized by using the simulated annealing algorithm. In order to fabricate this kind of FBGs with a conventional side-writing phase-mask technique, both the diffraction effects and fabrication tolerance of the phase-shifted phase mask have also been addressed. Compared with the numerical results, a 45-channel (spacing of 100 GHz) and an 81-channel (spacing of 50 GHz) phase-only sampled linearly chirped FBG are successfully demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 30, 899-901(1995).
    [CrossRef]
  2. Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, and A. E. Willner,"Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped Fiber Bragg Gratings," J. Lightwave Technol. 20, 2239-2246 (2002).
    [CrossRef]
  3. B. Eggleton, P. A. Krug, L. Poladian, and F. Oullette, "Long periodic superstructure Bragg gratings in optical fibres," Electron. Lett. 30, 1620-1622 (1994).
    [CrossRef]
  4. M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, "1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation," Electron. Lett. 33, 1891-1893 (1997).
    [CrossRef]
  5. Y. Painchaud, A. Mailoux, H. Chotard, E. Pelletier, and M. Guy, "Multi-channel fiber Bragg gratings for dispersion and slope compensation," in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), paper ThAA5.
  6. M. Morin, M. Poulin, A. Mailloux, F. Trepanier, and Y. Painchaud, "Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating," in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2004), paper WK1.
  7. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
    [CrossRef]
  8. W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Technol. Lett. 11, 1280-1282 (1999).
    [CrossRef]
  9. A. V. BuryakK. Y. Kolossovski, and D. Y. Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J. Quantum Electron. 39, 91-98 (2003).
    [CrossRef]
  10. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
    [CrossRef]
  11. H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 21, 2074-2083 (2003).
    [CrossRef]
  12. H. Lee and G. P. Agrawal, "Purely phase-sampled fiber Bagg gratings for broad-band dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
    [CrossRef]
  13. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, "Theory, design, and performance of extended tuning semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
    [CrossRef]
  14. H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, "Super structure grating (SSG) lasers for broadly tunable DBR lasers," IEEE Photon. Technol. Lett. 4, 393-395 (1993).
    [CrossRef]
  15. R. Kashyap, Fiber Bragg Grating (Academic, San Diego, 1999).
  16. L. Poladian, B. Ashton and W. Ppadden, "Interactive design and fabrication of complex FBGs," in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2003), paper WL1.
  17. Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
    [CrossRef]
  18. J. E. Rothenberg, H. Li, J. Popelek, J. Zweiback, and Y. Sheng, "A novel phase-only sampled 45-channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. (to be published).
    [PubMed]
  19. Y. Sheng and L. Sun, "Near-field diffraction of irregular phase gratings with multiple phase-shifts," Opt. Express 13, 6111-6116 (2005).
    [CrossRef] [PubMed]
  20. J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg grating by layer peeling," IEEE J. Quantum Electron. 37,165-173 (2001).
    [CrossRef]
  21. K.-M. Feng, S. Lee, R. Khosravani, S. S. Havstad, and J. E. Rothenberg, "45 ITU-100 channels dispersion compensation using cascaded full C-band sampled FBGs for transmission over 640-Km SMF," in Proc. Eur. Conf. Optical Communication (ECOC2003), paper Mo.3.2.5.

2005

2004

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

2003

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 21, 2074-2083 (2003).
[CrossRef]

H. Lee and G. P. Agrawal, "Purely phase-sampled fiber Bagg gratings for broad-band dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
[CrossRef]

A. V. BuryakK. Y. Kolossovski, and D. Y. Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

2002

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
[CrossRef]

Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, and A. E. Willner,"Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped Fiber Bragg Gratings," J. Lightwave Technol. 20, 2239-2246 (2002).
[CrossRef]

2001

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg grating by layer peeling," IEEE J. Quantum Electron. 37,165-173 (2001).
[CrossRef]

1999

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Technol. Lett. 11, 1280-1282 (1999).
[CrossRef]

1998

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

1997

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, "1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation," Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

1995

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 30, 899-901(1995).
[CrossRef]

1994

B. Eggleton, P. A. Krug, L. Poladian, and F. Oullette, "Long periodic superstructure Bragg gratings in optical fibres," Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

1993

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, "Theory, design, and performance of extended tuning semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, "Super structure grating (SSG) lasers for broadly tunable DBR lasers," IEEE Photon. Technol. Lett. 4, 393-395 (1993).
[CrossRef]

Agrawal, G. P.

H. Lee and G. P. Agrawal, "Purely phase-sampled fiber Bagg gratings for broad-band dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
[CrossRef]

Buryak, A. V.

A. V. BuryakK. Y. Kolossovski, and D. Y. Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

Chuang, Z. M.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, "Theory, design, and performance of extended tuning semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Coldren, L. A.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, "Theory, design, and performance of extended tuning semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, "1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation," Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

Dhosi, G.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 30, 899-901(1995).
[CrossRef]

Durkin, M.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, "1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation," Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Eggleton, B.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 30, 899-901(1995).
[CrossRef]

B. Eggleton, P. A. Krug, L. Poladian, and F. Oullette, "Long periodic superstructure Bragg gratings in optical fibres," Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg grating by layer peeling," IEEE J. Quantum Electron. 37,165-173 (2001).
[CrossRef]

Ibsen, M.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, "1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation," Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

Ishii, H.

H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, "Super structure grating (SSG) lasers for broadly tunable DBR lasers," IEEE Photon. Technol. Lett. 4, 393-395 (1993).
[CrossRef]

Jayaraman, V.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, "Theory, design, and performance of extended tuning semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Kolossovski, K. Y.

A. V. BuryakK. Y. Kolossovski, and D. Y. Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

Krug, P. A.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 30, 899-901(1995).
[CrossRef]

B. Eggleton, P. A. Krug, L. Poladian, and F. Oullette, "Long periodic superstructure Bragg gratings in optical fibres," Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, "1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation," Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

Lee, H.

H. Lee and G. P. Agrawal, "Purely phase-sampled fiber Bagg gratings for broad-band dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
[CrossRef]

Li, H.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 21, 2074-2083 (2003).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
[CrossRef]

Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, and A. E. Willner,"Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped Fiber Bragg Gratings," J. Lightwave Technol. 20, 2239-2246 (2002).
[CrossRef]

J. E. Rothenberg, H. Li, J. Popelek, J. Zweiback, and Y. Sheng, "A novel phase-only sampled 45-channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. (to be published).
[PubMed]

Li, Y.

Loh, W. H.

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Technol. Lett. 11, 1280-1282 (1999).
[CrossRef]

Ouellette, F.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 30, 899-901(1995).
[CrossRef]

Oullette, F.

B. Eggleton, P. A. Krug, L. Poladian, and F. Oullette, "Long periodic superstructure Bragg gratings in optical fibres," Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Pan, J. J.

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Technol. Lett. 11, 1280-1282 (1999).
[CrossRef]

Pan, Z.

Poladian, L.

B. Eggleton, P. A. Krug, L. Poladian, and F. Oullette, "Long periodic superstructure Bragg gratings in optical fibres," Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Popelek, J.

Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, and A. E. Willner,"Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped Fiber Bragg Gratings," J. Lightwave Technol. 20, 2239-2246 (2002).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
[CrossRef]

J. E. Rothenberg, H. Li, J. Popelek, J. Zweiback, and Y. Sheng, "A novel phase-only sampled 45-channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. (to be published).
[PubMed]

Rothenberg, J. E.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 21, 2074-2083 (2003).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
[CrossRef]

J. E. Rothenberg, H. Li, J. Popelek, J. Zweiback, and Y. Sheng, "A novel phase-only sampled 45-channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. (to be published).
[PubMed]

Sheng, Y.

Y. Sheng and L. Sun, "Near-field diffraction of irregular phase gratings with multiple phase-shifts," Opt. Express 13, 6111-6116 (2005).
[CrossRef] [PubMed]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 21, 2074-2083 (2003).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
[CrossRef]

J. E. Rothenberg, H. Li, J. Popelek, J. Zweiback, and Y. Sheng, "A novel phase-only sampled 45-channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. (to be published).
[PubMed]

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg grating by layer peeling," IEEE J. Quantum Electron. 37,165-173 (2001).
[CrossRef]

Song, Y. W.

Stepanov, D. Y.

A. V. BuryakK. Y. Kolossovski, and D. Y. Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

Stephens, T.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 30, 899-901(1995).
[CrossRef]

Sun, L.

Tamamrua, T.

H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, "Super structure grating (SSG) lasers for broadly tunable DBR lasers," IEEE Photon. Technol. Lett. 4, 393-395 (1993).
[CrossRef]

Tohmori, Y.

H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, "Super structure grating (SSG) lasers for broadly tunable DBR lasers," IEEE Photon. Technol. Lett. 4, 393-395 (1993).
[CrossRef]

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg grating by layer peeling," IEEE J. Quantum Electron. 37,165-173 (2001).
[CrossRef]

Wang, Y.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, and A. E. Willner,"Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped Fiber Bragg Gratings," J. Lightwave Technol. 20, 2239-2246 (2002).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
[CrossRef]

Wilcox, R. B.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
[CrossRef]

Willner, A. E.

Yoshikuni, Y.

H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, "Super structure grating (SSG) lasers for broadly tunable DBR lasers," IEEE Photon. Technol. Lett. 4, 393-395 (1993).
[CrossRef]

Yu, C.

Yu, Q.

Zhou, F. Q.

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Technol. Lett. 11, 1280-1282 (1999).
[CrossRef]

Zweiback, J.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
[CrossRef]

J. E. Rothenberg, H. Li, J. Popelek, J. Zweiback, and Y. Sheng, "A novel phase-only sampled 45-channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. (to be published).
[PubMed]

Electron. Lett.

B. Eggleton, P. A. Krug, L. Poladian, and F. Oullette, "Long periodic superstructure Bragg gratings in optical fibres," Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, "1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation," Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 30, 899-901(1995).
[CrossRef]

IEEE J. Quantum Electron.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, "Theory, design, and performance of extended tuning semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

A. V. BuryakK. Y. Kolossovski, and D. Y. Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg grating by layer peeling," IEEE J. Quantum Electron. 37,165-173 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Lee and G. P. Agrawal, "Purely phase-sampled fiber Bagg gratings for broad-band dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, "Dammann fiber Bragg gratings and phase-only sampling for high channel counts," IEEE Photon. Technol. Lett. 14, 1309-1311(2002).
[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, "Super structure grating (SSG) lasers for broadly tunable DBR lasers," IEEE Photon. Technol. Lett. 4, 393-395 (1993).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Technol. Lett. 11, 1280-1282 (1999).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

J. E. Rothenberg, H. Li, J. Popelek, J. Zweiback, and Y. Sheng, "A novel phase-only sampled 45-channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. (to be published).
[PubMed]

Other

R. Kashyap, Fiber Bragg Grating (Academic, San Diego, 1999).

L. Poladian, B. Ashton and W. Ppadden, "Interactive design and fabrication of complex FBGs," in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2003), paper WL1.

Y. Painchaud, A. Mailoux, H. Chotard, E. Pelletier, and M. Guy, "Multi-channel fiber Bragg gratings for dispersion and slope compensation," in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), paper ThAA5.

M. Morin, M. Poulin, A. Mailloux, F. Trepanier, and Y. Painchaud, "Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating," in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2004), paper WK1.

K.-M. Feng, S. Lee, R. Khosravani, S. S. Havstad, and J. E. Rothenberg, "45 ITU-100 channels dispersion compensation using cascaded full C-band sampled FBGs for transmission over 640-Km SMF," in Proc. Eur. Conf. Optical Communication (ECOC2003), paper Mo.3.2.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Diffraction geometry of the phase-shifted phase mask.

Fig. 2.
Fig. 2.

25-channel continuous phase-only sampling functions and their FFT spectra. (a) Phase functions with and without the diffraction effect, (b) spectrum without the diffraction, and (c) spectrum with the diffraction effect.

Fig. 3.
Fig. 3.

45-channel continuous phase-only sampling functions and their FFT spectra. (a) Phase functions with and without the diffraction effect, (b) spectrum without the diffraction, and (c) spectrum with the diffraction effect.

Fig. 4.
Fig. 4.

81-channel continuous phase-only sampling functions and their FFT spectra. (a) Phase functions with and without the diffraction effect, (b) spectrum without the diffraction, and (c) spectrum with the diffraction effect.

Fig. 5.
Fig. 5.

Calculated results for the sampled 45-channel FBG (channel spacing of 100 GHz). (a) Reflection spectrum for all 45 channels, (b) reflection and group delay spectra at the central channel.

Fig. 6.
Fig. 6.

Calculated results for the sampled 81-channel FBG (channel spacing of 50 GHz). (a) Reflection spectrum for all 81 channels, (b) reflection and group delay spectra at the central region.

Fig. 7.
Fig. 7.

FFT spectra for a 45-channel continuous phase-only sampling function, where the deviation to the spacing (10 μm) between the mask and the fiber are (a) ± 1 μm (b) ±3 μm , and (c) ±5 μm.

Fig. 8.
Fig. 8.

Experimental results for a fabricated 45-channel linearly chirped FBG. (a) Reflection spectrum for all 45-channel, (b) reflection and group delay spectra at the central channel.

Fig. 9.
Fig. 9.

Experimental results for a fabricated 81-channel (spacing 50 GHz) linearly chirped FBG. (a) Reflection spectrum for all 81-channel, (b) reflection and group delay spectra at the central two channels.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

θ g ( x ) = θ m ( x ) [ δ ( x Δ x 2 ) + δ ( x + Δ x 2 ) ] ,
θ ˜ g ( f ) = 2 cos ( πf Δ x ) θ ˜ m ( f ) ,
θ ˜ m ( f ) = θ ˜ g ( f ) cos ( πf Δ x ) ,
Δ n ( x ) = Re { ( Δ n 1 ( x ) 2 ) exp ( i ( 2 πx Λ + ϕ g ( x ) ) ) s ( x ) } ,
s ( x ) = s b ( x ) m δ ( x mP ) ,
s b ( x ) = exp [ i θ g ( x ) ] .
θ g ( x ) = n = 1 M α n cos ( 2 πnx P + β n ) ,
θ m ( x ) = n = 1 M α n 2 cos ( πn Δ x P ) cos ( 2 πnx P + β n ) .
θ g R ( x ) = n = 1 M α n cos ( 2 πnx P + β n ) cos ( πn Δ x P ) .
E ( x ) = N N [ S m ( α 1 , α 2 , α M , β 1 , β 2 , , β M ) 2 η 2 N + 1 ] 2 ,
h ( Δ E k ) = exp ( Δ E k T ) .
θ g R ( x ) = n = 1 M cos ( πn Δ x R P ) cos ( πnΔ x P ) . α n cos ( 2 πnx P + β n ) ,
Λ M ( x ) 2 ( Λ 1 + ( 1 2 π ) d Φ ( x ) d x ) ,

Metrics