Abstract

Large area color sensor arrays based on vertically integrated thin-film sensors were realized. The complete color information of each color pixel is detected at the same position of the sensor array without using optical filters. The sensor arrays consist of amorphous silicon thin film color sensors integrated on top of amorphous silicon readout transistors. The spectral sensitivity of the sensors is controlled by the applied bias voltage. The operating principle of the color sensor arrays is described. Furthermore, the image quality and the pixel cross talk of the sensor arrays is analyzed by measurements of the line spread function and the modulation transfer function.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Lyon, P. M. Hubel, "Eyeing the Camera: into the Next Century," Tenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications, Scottsdale, Arizona, USA, 10, 349 (2002).
  2. J. Zimmer, D. Knipp, H. Stiebig, H. Wagner, "Amorphous silicon based unipolar detctor for color recognition," IEEE Trans. Electron Devices,  45, 884 (1999).
    [CrossRef]
  3. P. Rieve, M. Sommer, M. Wagner, K. Seibel, M. Böhm, "A-Si:H Color Imagers and Colorimetry," J. Non Cryst. Solids,  266-269, 1168 (2000).
    [CrossRef]
  4. H. Stiebig, J. Giehl, D. Knipp, P. Rieve, M. Böhm, "Amorphous silicon three color detector," Mat. Res. Soc. Symp. Proc.,  377, 517 (1995).
    [CrossRef]
  5. D. Knipp, H. Stiebig, J. Fölsch, F. Finger, H. Wagner, "Amorphous silicon based nipiin structure for color detection," J. Appl. Phys.,  83, 1463 (1998).
    [CrossRef]
  6. F. Palma, "Multilayer Color Detecors," Springer Series in Material Science,Vol. 37, R.A. Street (Ed.), Springer, Berlin, 306 (2000).
  7. T. Lulé, M. Wagner, M. Verhoeven, H. Keller, M. Böhm, "100 000-Pixel-120-dB Imager in TFA Technology," IEEE J. of Solid-State Circuits,  35, 732 (2000).
    [CrossRef]
  8. H. Stiebig, R.A. Street, D. Knipp, M. Krause, J. Ho, "Vertically integrated thin film color sensor arrays for advanced sensing applications," Appl. Phys. Lett. 88, 013509 (2006).
    [CrossRef]
  9. R.A. Street, "Large area Image sensor arrays," Springer Series in Material Science Vol. 37, R.A. Street (Ed.), Springer, Berlin (2000).
  10. B. Stannowski, H. Stiebig, D. Knipp, H. Wagner, "Transient photocurrent of three-color detectors based on amorphous silicon," J. Appl. Phys.,  85, 3904 (1999).
    [CrossRef]

2006 (1)

H. Stiebig, R.A. Street, D. Knipp, M. Krause, J. Ho, "Vertically integrated thin film color sensor arrays for advanced sensing applications," Appl. Phys. Lett. 88, 013509 (2006).
[CrossRef]

2000 (2)

T. Lulé, M. Wagner, M. Verhoeven, H. Keller, M. Böhm, "100 000-Pixel-120-dB Imager in TFA Technology," IEEE J. of Solid-State Circuits,  35, 732 (2000).
[CrossRef]

P. Rieve, M. Sommer, M. Wagner, K. Seibel, M. Böhm, "A-Si:H Color Imagers and Colorimetry," J. Non Cryst. Solids,  266-269, 1168 (2000).
[CrossRef]

1999 (2)

J. Zimmer, D. Knipp, H. Stiebig, H. Wagner, "Amorphous silicon based unipolar detctor for color recognition," IEEE Trans. Electron Devices,  45, 884 (1999).
[CrossRef]

B. Stannowski, H. Stiebig, D. Knipp, H. Wagner, "Transient photocurrent of three-color detectors based on amorphous silicon," J. Appl. Phys.,  85, 3904 (1999).
[CrossRef]

1998 (1)

D. Knipp, H. Stiebig, J. Fölsch, F. Finger, H. Wagner, "Amorphous silicon based nipiin structure for color detection," J. Appl. Phys.,  83, 1463 (1998).
[CrossRef]

1995 (1)

H. Stiebig, J. Giehl, D. Knipp, P. Rieve, M. Böhm, "Amorphous silicon three color detector," Mat. Res. Soc. Symp. Proc.,  377, 517 (1995).
[CrossRef]

Böhm, M.

P. Rieve, M. Sommer, M. Wagner, K. Seibel, M. Böhm, "A-Si:H Color Imagers and Colorimetry," J. Non Cryst. Solids,  266-269, 1168 (2000).
[CrossRef]

T. Lulé, M. Wagner, M. Verhoeven, H. Keller, M. Böhm, "100 000-Pixel-120-dB Imager in TFA Technology," IEEE J. of Solid-State Circuits,  35, 732 (2000).
[CrossRef]

H. Stiebig, J. Giehl, D. Knipp, P. Rieve, M. Böhm, "Amorphous silicon three color detector," Mat. Res. Soc. Symp. Proc.,  377, 517 (1995).
[CrossRef]

Finger, F.

D. Knipp, H. Stiebig, J. Fölsch, F. Finger, H. Wagner, "Amorphous silicon based nipiin structure for color detection," J. Appl. Phys.,  83, 1463 (1998).
[CrossRef]

Fölsch, J.

D. Knipp, H. Stiebig, J. Fölsch, F. Finger, H. Wagner, "Amorphous silicon based nipiin structure for color detection," J. Appl. Phys.,  83, 1463 (1998).
[CrossRef]

Giehl, J.

H. Stiebig, J. Giehl, D. Knipp, P. Rieve, M. Böhm, "Amorphous silicon three color detector," Mat. Res. Soc. Symp. Proc.,  377, 517 (1995).
[CrossRef]

Ho, J.

H. Stiebig, R.A. Street, D. Knipp, M. Krause, J. Ho, "Vertically integrated thin film color sensor arrays for advanced sensing applications," Appl. Phys. Lett. 88, 013509 (2006).
[CrossRef]

Keller, H.

T. Lulé, M. Wagner, M. Verhoeven, H. Keller, M. Böhm, "100 000-Pixel-120-dB Imager in TFA Technology," IEEE J. of Solid-State Circuits,  35, 732 (2000).
[CrossRef]

Knipp, D.

H. Stiebig, R.A. Street, D. Knipp, M. Krause, J. Ho, "Vertically integrated thin film color sensor arrays for advanced sensing applications," Appl. Phys. Lett. 88, 013509 (2006).
[CrossRef]

B. Stannowski, H. Stiebig, D. Knipp, H. Wagner, "Transient photocurrent of three-color detectors based on amorphous silicon," J. Appl. Phys.,  85, 3904 (1999).
[CrossRef]

J. Zimmer, D. Knipp, H. Stiebig, H. Wagner, "Amorphous silicon based unipolar detctor for color recognition," IEEE Trans. Electron Devices,  45, 884 (1999).
[CrossRef]

D. Knipp, H. Stiebig, J. Fölsch, F. Finger, H. Wagner, "Amorphous silicon based nipiin structure for color detection," J. Appl. Phys.,  83, 1463 (1998).
[CrossRef]

H. Stiebig, J. Giehl, D. Knipp, P. Rieve, M. Böhm, "Amorphous silicon three color detector," Mat. Res. Soc. Symp. Proc.,  377, 517 (1995).
[CrossRef]

Krause, M.

H. Stiebig, R.A. Street, D. Knipp, M. Krause, J. Ho, "Vertically integrated thin film color sensor arrays for advanced sensing applications," Appl. Phys. Lett. 88, 013509 (2006).
[CrossRef]

Lulé, T.

T. Lulé, M. Wagner, M. Verhoeven, H. Keller, M. Böhm, "100 000-Pixel-120-dB Imager in TFA Technology," IEEE J. of Solid-State Circuits,  35, 732 (2000).
[CrossRef]

Rieve, P.

P. Rieve, M. Sommer, M. Wagner, K. Seibel, M. Böhm, "A-Si:H Color Imagers and Colorimetry," J. Non Cryst. Solids,  266-269, 1168 (2000).
[CrossRef]

H. Stiebig, J. Giehl, D. Knipp, P. Rieve, M. Böhm, "Amorphous silicon three color detector," Mat. Res. Soc. Symp. Proc.,  377, 517 (1995).
[CrossRef]

Seibel, K.

P. Rieve, M. Sommer, M. Wagner, K. Seibel, M. Böhm, "A-Si:H Color Imagers and Colorimetry," J. Non Cryst. Solids,  266-269, 1168 (2000).
[CrossRef]

Sommer, M.

P. Rieve, M. Sommer, M. Wagner, K. Seibel, M. Böhm, "A-Si:H Color Imagers and Colorimetry," J. Non Cryst. Solids,  266-269, 1168 (2000).
[CrossRef]

Stannowski, B.

B. Stannowski, H. Stiebig, D. Knipp, H. Wagner, "Transient photocurrent of three-color detectors based on amorphous silicon," J. Appl. Phys.,  85, 3904 (1999).
[CrossRef]

Stiebig, H.

H. Stiebig, R.A. Street, D. Knipp, M. Krause, J. Ho, "Vertically integrated thin film color sensor arrays for advanced sensing applications," Appl. Phys. Lett. 88, 013509 (2006).
[CrossRef]

B. Stannowski, H. Stiebig, D. Knipp, H. Wagner, "Transient photocurrent of three-color detectors based on amorphous silicon," J. Appl. Phys.,  85, 3904 (1999).
[CrossRef]

J. Zimmer, D. Knipp, H. Stiebig, H. Wagner, "Amorphous silicon based unipolar detctor for color recognition," IEEE Trans. Electron Devices,  45, 884 (1999).
[CrossRef]

D. Knipp, H. Stiebig, J. Fölsch, F. Finger, H. Wagner, "Amorphous silicon based nipiin structure for color detection," J. Appl. Phys.,  83, 1463 (1998).
[CrossRef]

H. Stiebig, J. Giehl, D. Knipp, P. Rieve, M. Böhm, "Amorphous silicon three color detector," Mat. Res. Soc. Symp. Proc.,  377, 517 (1995).
[CrossRef]

Street, R.A.

H. Stiebig, R.A. Street, D. Knipp, M. Krause, J. Ho, "Vertically integrated thin film color sensor arrays for advanced sensing applications," Appl. Phys. Lett. 88, 013509 (2006).
[CrossRef]

Verhoeven, M.

T. Lulé, M. Wagner, M. Verhoeven, H. Keller, M. Böhm, "100 000-Pixel-120-dB Imager in TFA Technology," IEEE J. of Solid-State Circuits,  35, 732 (2000).
[CrossRef]

Wagner, H.

B. Stannowski, H. Stiebig, D. Knipp, H. Wagner, "Transient photocurrent of three-color detectors based on amorphous silicon," J. Appl. Phys.,  85, 3904 (1999).
[CrossRef]

J. Zimmer, D. Knipp, H. Stiebig, H. Wagner, "Amorphous silicon based unipolar detctor for color recognition," IEEE Trans. Electron Devices,  45, 884 (1999).
[CrossRef]

D. Knipp, H. Stiebig, J. Fölsch, F. Finger, H. Wagner, "Amorphous silicon based nipiin structure for color detection," J. Appl. Phys.,  83, 1463 (1998).
[CrossRef]

Wagner, M.

T. Lulé, M. Wagner, M. Verhoeven, H. Keller, M. Böhm, "100 000-Pixel-120-dB Imager in TFA Technology," IEEE J. of Solid-State Circuits,  35, 732 (2000).
[CrossRef]

P. Rieve, M. Sommer, M. Wagner, K. Seibel, M. Böhm, "A-Si:H Color Imagers and Colorimetry," J. Non Cryst. Solids,  266-269, 1168 (2000).
[CrossRef]

Zimmer, J.

J. Zimmer, D. Knipp, H. Stiebig, H. Wagner, "Amorphous silicon based unipolar detctor for color recognition," IEEE Trans. Electron Devices,  45, 884 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

H. Stiebig, R.A. Street, D. Knipp, M. Krause, J. Ho, "Vertically integrated thin film color sensor arrays for advanced sensing applications," Appl. Phys. Lett. 88, 013509 (2006).
[CrossRef]

IEEE J. of Solid-State Circuits (1)

T. Lulé, M. Wagner, M. Verhoeven, H. Keller, M. Böhm, "100 000-Pixel-120-dB Imager in TFA Technology," IEEE J. of Solid-State Circuits,  35, 732 (2000).
[CrossRef]

IEEE Trans. Electron Devices (1)

J. Zimmer, D. Knipp, H. Stiebig, H. Wagner, "Amorphous silicon based unipolar detctor for color recognition," IEEE Trans. Electron Devices,  45, 884 (1999).
[CrossRef]

J. Appl. Phys. (2)

D. Knipp, H. Stiebig, J. Fölsch, F. Finger, H. Wagner, "Amorphous silicon based nipiin structure for color detection," J. Appl. Phys.,  83, 1463 (1998).
[CrossRef]

B. Stannowski, H. Stiebig, D. Knipp, H. Wagner, "Transient photocurrent of three-color detectors based on amorphous silicon," J. Appl. Phys.,  85, 3904 (1999).
[CrossRef]

J. Non Cryst. Solids (1)

P. Rieve, M. Sommer, M. Wagner, K. Seibel, M. Böhm, "A-Si:H Color Imagers and Colorimetry," J. Non Cryst. Solids,  266-269, 1168 (2000).
[CrossRef]

Mat. Res. Soc. Symp. Proc. (1)

H. Stiebig, J. Giehl, D. Knipp, P. Rieve, M. Böhm, "Amorphous silicon three color detector," Mat. Res. Soc. Symp. Proc.,  377, 517 (1995).
[CrossRef]

Other (3)

F. Palma, "Multilayer Color Detecors," Springer Series in Material Science,Vol. 37, R.A. Street (Ed.), Springer, Berlin, 306 (2000).

R. F. Lyon, P. M. Hubel, "Eyeing the Camera: into the Next Century," Tenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications, Scottsdale, Arizona, USA, 10, 349 (2002).

R.A. Street, "Large area Image sensor arrays," Springer Series in Material Science Vol. 37, R.A. Street (Ed.), Springer, Berlin (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematically illustrated edge detection of a sensor using color filters and a vertically integrated sensor: (a) A black and white image of an edge is projected on the color filter array and the vertically integrated sensor. (b) R, G, and B images of the projected image, (c) Resulting image of the projected edge.

Fig. 2.
Fig. 2.

Cross section of a pixel of a large area color sensor array.

Fig. 3.
Fig. 3.

Schematic cross section of a nipiin color sensor structure

Fig. 4.
Fig. 4.

Spectral response of the nipiin sensors for the applied bias voltages of V=+1.5V, -0.6V, and -3.5V.

Fig. 5.
Fig. 5.

Images taken for the applied bias voltages of 1.5 V (a), -0.6 V (b), -3.5 V (c). The images have a resolution of 185 × 280 pixels. A linear color transform was applied to merge the images in Fig. 5(a), 5(b) and 5(c). The RGB image is given in Fig. 5(d).

Fig. 6.
Fig. 6.

Measured and normalized Line Spread Function (LSF) of the bottom diode of the color sensor array for different integration times (50ms, 267ms, 1000ms). A voltage of -0.6V was applied to the color sensor.

Fig. 7.
Fig. 7.

Measured and calculated Modulation Transfer Functions (MTF) of the top diode and the bottom diode of the color sensor array for applied bias voltages of 1.5V (a), -0.6V (b) and -3.5V (c). The measurements were taken for a short integration time (50ms).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

MTF ( f ) = ( LSF ( x ) ) = sin c ( πdf )
MTF ( f ) = sin c ( πdf ) 1 1 + α f 2 .

Metrics