Abstract

Under the grazing incidence of a relativistic intense laser pulse onto a solid target, two-dimensional particle-in-cell simulations show that intense quasistatic magnetic and electric fields are generated near the front target surface during the interaction. Some electrons are confined in these quasistatic fields and move along the target surface with betatron oscillations. When this oscillating frequency is close to the laser frequency in the particle frame, these electrons can be accelerated significantly in the reflected laser field, similar to the inverse free-electron-laser acceleration. An analytical model for this surface betatron acceleration is proposed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
    [CrossRef]
  2. 2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
    [CrossRef]
  3. F. Brunel, "Not-So-Resonant, Resonant Absorption," Phys. Rev. Lett. 59,52-55 (1987).
    [CrossRef] [PubMed]
  4. W. L. Kruer and K. Estabrook, "J×B heating by very intense laser light," Phys. Fluids 28,430-432 (1985).
    [CrossRef]
  5. Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
    [CrossRef] [PubMed]
  6. A. Pukhov, Z. M. Sheng, and J. Meyer-ter-Vehn, "Particle acceleration in relativistic laser channels," Phys. Plasmas 6, 2847-2854 (1999).
    [CrossRef]
  7. 7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
    [CrossRef]

2004 (1)

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

2002 (1)

Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
[CrossRef] [PubMed]

1999 (1)

A. Pukhov, Z. M. Sheng, and J. Meyer-ter-Vehn, "Particle acceleration in relativistic laser channels," Phys. Plasmas 6, 2847-2854 (1999).
[CrossRef]

1994 (1)

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

1987 (1)

F. Brunel, "Not-So-Resonant, Resonant Absorption," Phys. Rev. Lett. 59,52-55 (1987).
[CrossRef] [PubMed]

1985 (1)

W. L. Kruer and K. Estabrook, "J×B heating by very intense laser light," Phys. Fluids 28,430-432 (1985).
[CrossRef]

1975 (1)

2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
[CrossRef]

2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
[CrossRef]

Brunel, F.

F. Brunel, "Not-So-Resonant, Resonant Absorption," Phys. Rev. Lett. 59,52-55 (1987).
[CrossRef] [PubMed]

Campbell, E. M.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

Cowan, T. E.

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

Estabrook, K.

W. L. Kruer and K. Estabrook, "J×B heating by very intense laser light," Phys. Fluids 28,430-432 (1985).
[CrossRef]

Estabrook, K. G.

2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
[CrossRef]

Forslund, D. W.

2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
[CrossRef]

Glinsky, M. E.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

Hammer, J.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

Jovanovic, M.S.

Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
[CrossRef] [PubMed]

Kato, S.

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

Kenneth Lee, J. M.

2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
[CrossRef]

Kindel, J. M.

2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
[CrossRef]

Kodama, R.

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

Kruer, W. L.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

W. L. Kruer and K. Estabrook, "J×B heating by very intense laser light," Phys. Fluids 28,430-432 (1985).
[CrossRef]

2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
[CrossRef]

Mason, R. J.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

Meyer-ter-Vehn, J.

Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
[CrossRef] [PubMed]

A. Pukhov, Z. M. Sheng, and J. Meyer-ter-Vehn, "Particle acceleration in relativistic laser channels," Phys. Plasmas 6, 2847-2854 (1999).
[CrossRef]

Mima, K.

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
[CrossRef] [PubMed]

Nagatomo, H.

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

Nakamura, T.

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

Perry, M. D.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

Pukhov, A.

A. Pukhov, Z. M. Sheng, and J. Meyer-ter-Vehn, "Particle acceleration in relativistic laser channels," Phys. Plasmas 6, 2847-2854 (1999).
[CrossRef]

Ruhl, H.

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

Sentoku, Y.

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
[CrossRef] [PubMed]

Sheng, Z. M.

Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
[CrossRef] [PubMed]

A. Pukhov, Z. M. Sheng, and J. Meyer-ter-Vehn, "Particle acceleration in relativistic laser channels," Phys. Plasmas 6, 2847-2854 (1999).
[CrossRef]

Tabak, M.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

Taguchi, T.

Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
[CrossRef] [PubMed]

Toyama, Y.

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

Valeo, E. J.

2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
[CrossRef]

Wilks, S. C.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

Woodworth, J.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

Zhang, J.

Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
[CrossRef] [PubMed]

Phys. Fluids (2)

2. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, "Two-dimensional relativistic simulations of resonance absorption," Phys. Fluids 18,1151-1159 (1975);D. W. Forslund, J. M. Kindel, Kenneth Lee, E. L. Lindman, and R. L. Morse, "Theory and simulation of resonant absorption in a hot plasma," Phys. Rev. A 11,679-683 (1975).
[CrossRef]

W. L. Kruer and K. Estabrook, "J×B heating by very intense laser light," Phys. Fluids 28,430-432 (1985).
[CrossRef]

Phys. Plasmas (3)

A. Pukhov, Z. M. Sheng, and J. Meyer-ter-Vehn, "Particle acceleration in relativistic laser channels," Phys. Plasmas 6, 2847-2854 (1999).
[CrossRef]

7. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasmas,  11, 3083-3087 (2004);T. Nakamura, S. Kato, H. Nagatomo and K. Mima, "Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation," Phys. Rev. Lett. 93,265002 (2004).
[CrossRef]

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas 1, 1626-1634 (1994).
[CrossRef]

Phys. Rev. Lett. (2)

Z. M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, "Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma," Phys. Rev. Lett. 88, 055004 (2002).
[CrossRef] [PubMed]

F. Brunel, "Not-So-Resonant, Resonant Absorption," Phys. Rev. Lett. 59,52-55 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulation geometry and selected electron trajectories along the target surface. The inset frame shows the initial target density profile along the normal to the target surface.

Fig. 2
Fig. 2

Distributions of the quasistatic electric field along the Y-direction (a), X-direction (b), and magnetic field along the Z-direction (c) after the laser pulse has propagated for 40 laser periods from the left incident border. (d) The magnetic field at the time of 60 laser periods. The white dashed lines represent the target front surface.

Fig. 3
Fig. 3

Configuration of electron betatron oscillation and acceleration along the target surface.

Fig. 4.
Fig. 4.

Selected two electron trajectories [labeled with (1) and (2)] and their energy changes along the trajectories (a) and with time (b). The color bar in (a) shows the relativistic factor of the electrons. Frames (c), (d), and (e) show snapshots of the laser field (Ey), the vertical component of the quasistatic electric filed (〈E 〉), and the quasistatic magnetic field (<Bz>), respectively, together with the two electron trajectories.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d p x dt = e [ E l cos α + v y ( B z l + B s ) ]
d p y dt = e [ E l sin α + E s v x ( B z l + B s ) ]
dt = e mc 2 [ v x E l cos α + v y ( E l sin α + E s ) ]
d 2 y dt 2 + ω β 2 y =
e γ m [ 1 c 2 ( dy dt ) 2 sin α ( sin α v x v ph ) v y v x sin α c 2 ] E l + 2 c 2 ( dy dt ) 2 ω 0 2 κ E 2 πγ y
ω β = { ω 0 ( κ E 2 πγ ) 1 2 ω β+ y 0 ; ω 0 [ ( κ E + v x κ B c ) 2 πγ ] 1 2 ω β y < o ; .

Metrics