Abstract

We propose a new design of microstructured fiber combining large doped area (500 μm2), high rare earth concentration and single mode propagation despite the high core refractive index (nSi + 0.01). Actually, original guiding properties, based on a total internal reflection guidance regime modified by coupling between core and resonant cladding modes (close to the ARROW model) ensure single mode propagation. Moreover spectral properties which are largely governed by characteristics of high index cladding rods can be adjusted by properly choosing diameter and refractive index of the rods.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bonati, H. Voelckel, U. Krause A. Tünnermann, J. Limpert, A. Liem, T. Schireiber, S. Nolte, H. Zellmer, "1.53 kW from a single Yb-doped photonic crystal fiber laser," Late breaking news, Photonics West 2005.
  2. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004),
    [CrossRef] [PubMed]
  3. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6088
    [CrossRef] [PubMed]
  4. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, "Low nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004),
    [CrossRef] [PubMed]
  5. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313
    [CrossRef]
  6. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Roser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jacobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005).
    [CrossRef]
  7. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1055
    [CrossRef] [PubMed]
  8. N. A. Mortensen, and J. R. Folkenberg, "Low-loss criterion and effective area considerations for photonic crystal fibres," J. Opt. A: Pure Appl. Opt.  5, 163-167 (2003).
    [CrossRef]
  9. N. M. Litchinistser, A. K. Abeeluck, C. Headdley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef] [PubMed]
  10. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. Martinjn de Sterke and B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fiber," Opt. Express 12, 5424-5433 (2004).
    [CrossRef]
  11. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5424
  12. T. P White, R. C. McPhedran, C. Martinjn de Sterke, N. M. Litchinistser and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  13. J. M. Fini, "Design of solid and microstructure fibers for suppression of high-order modes," Opt. Express 13, 3477-3490 (2005).
  14. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3477
  15. J. C. Nedelec, "A new family of mixed finite element in R3," Numer. Math. 50, 57-81 (1986).
  16. A. W. Snyder, J. D. Love, Optical Waveguide theory, (Chapman & Hall, New York/Tokyo, (1991)).
  17. M. Heiblum, J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," J. Quantum Electron. QE-11, 75-83 (1975).
  18. C. Vassalo, Théorie des guides d’ondes électromagnétiques, Tome II, (ed. Eyrolles Paris, 288-298 (1985).

2005 (2)

2004 (3)

2003 (1)

N. A. Mortensen, and J. R. Folkenberg, "Low-loss criterion and effective area considerations for photonic crystal fibres," J. Opt. A: Pure Appl. Opt.  5, 163-167 (2003).
[CrossRef]

2002 (2)

1986 (1)

J. C. Nedelec, "A new family of mixed finite element in R3," Numer. Math. 50, 57-81 (1986).

1975 (1)

M. Heiblum, J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," J. Quantum Electron. QE-11, 75-83 (1975).

Abeeluck, A. K.

Broeng, J.

Deguil-Robin, N.

Eggleton, B. J.

Fini, J. M.

Folkenberg, J. R.

N. A. Mortensen, and J. R. Folkenberg, "Low-loss criterion and effective area considerations for photonic crystal fibres," J. Opt. A: Pure Appl. Opt.  5, 163-167 (2003).
[CrossRef]

Harris, J. H.

M. Heiblum, J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," J. Quantum Electron. QE-11, 75-83 (1975).

Headdley, C.

Heiblum, M.

M. Heiblum, J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," J. Quantum Electron. QE-11, 75-83 (1975).

Jacobsen, C.

Jeong, Y.

Kuhlmey, B. T.

Liem, A.

Limpert, J.

Litchinistser, N. M.

Manek-Hönninger, I.

Martinjn de Sterke, C.

McPhedran, R. C.

Mortensen, N. A.

N. A. Mortensen, and J. R. Folkenberg, "Low-loss criterion and effective area considerations for photonic crystal fibres," J. Opt. A: Pure Appl. Opt.  5, 163-167 (2003).
[CrossRef]

Nedelec, J. C.

J. C. Nedelec, "A new family of mixed finite element in R3," Numer. Math. 50, 57-81 (1986).

Nilsson, J.

Nolte, S.

Payne, D. N.

Petersson, A.

Reich, M.

Roser, F.

Sahu, J. K.

Salin, F.

Schreiber, T.

Steel, M. J.

Steinvurzel, P.

Tünnermann, A.

White, T. P

White, T. P.

Zellmer, H.

J. Opt. A: Pure Appl. Opt. (1)

N. A. Mortensen, and J. R. Folkenberg, "Low-loss criterion and effective area considerations for photonic crystal fibres," J. Opt. A: Pure Appl. Opt.  5, 163-167 (2003).
[CrossRef]

J. Quantum Electron. (1)

M. Heiblum, J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," J. Quantum Electron. QE-11, 75-83 (1975).

Numer. Math. (1)

J. C. Nedelec, "A new family of mixed finite element in R3," Numer. Math. 50, 57-81 (1986).

Opt. Express (5)

Opt. Lett. (2)

Other (8)

C. Vassalo, Théorie des guides d’ondes électromagnétiques, Tome II, (ed. Eyrolles Paris, 288-298 (1985).

A. W. Snyder, J. D. Love, Optical Waveguide theory, (Chapman & Hall, New York/Tokyo, (1991)).

G. Bonati, H. Voelckel, U. Krause A. Tünnermann, J. Limpert, A. Liem, T. Schireiber, S. Nolte, H. Zellmer, "1.53 kW from a single Yb-doped photonic crystal fiber laser," Late breaking news, Photonics West 2005.

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6088
[CrossRef] [PubMed]

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1055
[CrossRef] [PubMed]

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313
[CrossRef]

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5424

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3477

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Fiber structure where refractive index level is given in false colors

Fig. 2.
Fig. 2.

Coupling mechanisms in microstructured cladding fibers with (a) silica core (ARROW structure); (b) doped core: dashed lines represent effective indexes of rod modes and solid lines represent effective indexes of modes predominantly guided in the core. Red circles and arrows indicate the coupling effect.

Fig. 3.
Fig. 3.

(a) Real part and (b) imaginary part of the effective indexes of the fundamental (circles) and second (triangles) modes of the core; the dashed line is the effective index evolution of the fundamental mode of the rods; the arrows indicate the phase-matching wavelengths.

Fig. 4.
Fig. 4.

Overlap factor between rod modes (LP01 and LP11) and core modes (fundamental and some of high order modes).

Fig. 5.
Fig. 5.

(a) Fundamental and (b) second modes patterns of the microstructured fiber.

Fig. 6.
Fig. 6.

Real part of effective indexes of some core modes (solid curves) and rod modes (dashed curves).

Fig. 7.
Fig. 7.

Imaginary part of the effective index of the fundamental mode guided predominantly in the core for different cladding structures.

Fig. 8.
Fig. 8.

curvature influence

Metrics