Abstract

We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and modulation of the transmission signal in the kHz range is achieved by bringing an AFM tip onto the center of the microcavity, inducing a damping effect on the transmission resonance. Tuning of the resonant wavelength in the order of several nanometers becomes possible by inserting the AFM tip into one of the holes of the Bragg mirror forming the microcavity in the propagation direction.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Photonic band-gap structures", J. Opt. Soc. Am. B 10, 283-295, (1993).
    [CrossRef]
  2. J. D. Joannopoulos, R. D. Maede, J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, (1995).
  3. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780, (1999).
    [CrossRef]
  4. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
    [CrossRef] [PubMed]
  5. M. Notomi, A. Shinya, S. Mitsugi, E. Kuarmochi, H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1554-1561 (2004).
    [CrossRef]
  6. I. Märki, M. Salt and H. P. Herzig, "Practical and theoretical modal analysis of photonic crystal waveguides," J. Appl. Phys. 95, 7-11, (2004).
    [CrossRef]
  7. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11, (1998).
    [CrossRef] [PubMed]
  8. S. Noda, A. Chutinan, M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610, (2000).
    [CrossRef] [PubMed]
  9. M. Lončar, T. Yoshie, A. Scherer, "Low threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
    [CrossRef]
  10. J. Vučković, M. Lončar, H. Mabuchi, A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Tev. E 65, 016608, (2001).
    [CrossRef]
  11. K. Srinivasan, O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684, (2002).
    [PubMed]
  12. Y. Akahane, T. Asano, B-S Song, S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214, (2005).
    [CrossRef] [PubMed]
  13. A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar, "Controlling the Resonance of Photonic Crystal Microcavity by a Near-Field Probe," Phys. Rev. Lett. 95, 153904 (2005).
    [CrossRef] [PubMed]
  14. Y. Akahana, T. Asano, B-S Song, S. Noda, "High-Q photonic nanocavity in two-dimensional photonic crystal," Nature 425, 944-947, (2003).
    [CrossRef]
  15. Ph. Lalanne, J. P. Hugonin, "Bloch-wave engineering for high Q’s, small V’s microcavities," IEEE J. Quantum Electron. 39, 1430-1438, (2003).
    [CrossRef]
  16. Ph. Lalanne, S. Mias, J. P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-466, (2004).
    [CrossRef] [PubMed]
  17. C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696, (1995).
    [CrossRef]
  18. T. Weiland, "A discretization method for the solution of Maxwell’s equations for six-component fields," Electron. Commun. 31, 116-120, 1977.
  19. E. A. Camargo, H. M. H. Chong and R. M. De La Rue, "2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure," Opt. Express 12, 588-592, (2004).
    [CrossRef] [PubMed]
  20. B. Wil, R. Ferrini, R. Houdré, M. Mulot, S. Anand, C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848, (2004).
    [CrossRef]
  21. D. M. Pustai, A. Sharkawy, S. Shi, D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opitcs 41, 5574-5579, (2002).
    [CrossRef]
  22. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769, (2003).
    [CrossRef]
  23. S. M. Weiss, H. Ouyang, J Zhang, Ph. M. Fauchet, "Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals," Opt. Express 13, 1090-1097, (2005).
    [CrossRef] [PubMed]
  24. D. Erickson, T. Rockwood, T. Emery, A. Scherer, D. Psaltis, "Nanofluidic tuning of photonic crystal circuits", Opt. Lett. 31, 59-61, (2006).
    [CrossRef] [PubMed]
  25. A. Sharkawy, S. Shi, D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides", Opt. Express 10, 1048-1059, (2002).
    [PubMed]
  26. S. W. Leaonard H. M. van Driel, J. Schilling and R. B. Wehrsporn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102, (2002).
    [CrossRef]
  27. F. Raineri, C. Cojocaru, R. Rai, P. Monnier, A. Levenson, C. Seassal, X. Letartre, P. Viktorovitch, "Tuning a two-dimensional photonic crystal resonance via optical carrier injection," Opt. Lett. 30, 64-66, (2005).
    [CrossRef] [PubMed]
  28. P. E. Barclay, K. Srinivasan, O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820, (2005).
    [CrossRef] [PubMed]
  29. I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 011604, (2006).
    [CrossRef]
  30. W. Park, J.-B. Lee, "Mechanically tunable photonic crystal structure," App. Phys. Lett. 85, 4845-4847, (2004).
    [CrossRef]
  31. S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
    [CrossRef]
  32. T. Takahata, K. Hoshino, K. Matsumoto, I. Shimoyama, "Photonic crystal tuned by cantilever", 18th IEEE International Conference on Micro Electro Mechanical Systems, Miami, Florida, USA, January 30 - February 3, 2005.

2006 (3)

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 011604, (2006).
[CrossRef]

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, D. Psaltis, "Nanofluidic tuning of photonic crystal circuits", Opt. Lett. 31, 59-61, (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (6)

M. Notomi, A. Shinya, S. Mitsugi, E. Kuarmochi, H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1554-1561 (2004).
[CrossRef]

I. Märki, M. Salt and H. P. Herzig, "Practical and theoretical modal analysis of photonic crystal waveguides," J. Appl. Phys. 95, 7-11, (2004).
[CrossRef]

W. Park, J.-B. Lee, "Mechanically tunable photonic crystal structure," App. Phys. Lett. 85, 4845-4847, (2004).
[CrossRef]

B. Wil, R. Ferrini, R. Houdré, M. Mulot, S. Anand, C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848, (2004).
[CrossRef]

Ph. Lalanne, S. Mias, J. P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-466, (2004).
[CrossRef] [PubMed]

E. A. Camargo, H. M. H. Chong and R. M. De La Rue, "2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure," Opt. Express 12, 588-592, (2004).
[CrossRef] [PubMed]

2003 (3)

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769, (2003).
[CrossRef]

Y. Akahana, T. Asano, B-S Song, S. Noda, "High-Q photonic nanocavity in two-dimensional photonic crystal," Nature 425, 944-947, (2003).
[CrossRef]

Ph. Lalanne, J. P. Hugonin, "Bloch-wave engineering for high Q’s, small V’s microcavities," IEEE J. Quantum Electron. 39, 1430-1438, (2003).
[CrossRef]

2002 (5)

M. Lončar, T. Yoshie, A. Scherer, "Low threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

D. M. Pustai, A. Sharkawy, S. Shi, D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opitcs 41, 5574-5579, (2002).
[CrossRef]

S. W. Leaonard H. M. van Driel, J. Schilling and R. B. Wehrsporn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102, (2002).
[CrossRef]

K. Srinivasan, O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684, (2002).
[PubMed]

A. Sharkawy, S. Shi, D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides", Opt. Express 10, 1048-1059, (2002).
[PubMed]

2001 (1)

J. Vučković, M. Lončar, H. Mabuchi, A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Tev. E 65, 016608, (2001).
[CrossRef]

2000 (1)

S. Noda, A. Chutinan, M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610, (2000).
[CrossRef] [PubMed]

1999 (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780, (1999).
[CrossRef]

1998 (1)

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

1995 (1)

C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696, (1995).
[CrossRef]

1993 (1)

1977 (1)

T. Weiland, "A discretization method for the solution of Maxwell’s equations for six-component fields," Electron. Commun. 31, 116-120, 1977.

Akahana, Y.

Y. Akahana, T. Asano, B-S Song, S. Noda, "High-Q photonic nanocavity in two-dimensional photonic crystal," Nature 425, 944-947, (2003).
[CrossRef]

Akahane, Y.

Anand, S.

B. Wil, R. Ferrini, R. Houdré, M. Mulot, S. Anand, C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848, (2004).
[CrossRef]

Arakawa, Y.

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B-S Song, S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214, (2005).
[CrossRef] [PubMed]

Y. Akahana, T. Asano, B-S Song, S. Noda, "High-Q photonic nanocavity in two-dimensional photonic crystal," Nature 425, 944-947, (2003).
[CrossRef]

Barclay, P. E.

Buchler, B. C.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar, "Controlling the Resonance of Photonic Crystal Microcavity by a Near-Field Probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

Camargo, E. A.

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Cheng, C. C.

C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696, (1995).
[CrossRef]

Chong, H. M. H.

Chutinan, A.

S. Noda, A. Chutinan, M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610, (2000).
[CrossRef] [PubMed]

Cojocaru, C.

De La Rue, R. M.

El Melhaoui, L.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 011604, (2006).
[CrossRef]

Emery, T.

Erickson, D.

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780, (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11, (1998).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Fauchet, Ph. M.

Fedeli, J. M.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 011604, (2006).
[CrossRef]

Ferrini, R.

B. Wil, R. Ferrini, R. Houdré, M. Mulot, S. Anand, C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848, (2004).
[CrossRef]

Forchel, A.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769, (2003).
[CrossRef]

Fujita, H.

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Gomyo, A.

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Herzig, H. P.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 011604, (2006).
[CrossRef]

I. Märki, M. Salt and H. P. Herzig, "Practical and theoretical modal analysis of photonic crystal waveguides," J. Appl. Phys. 95, 7-11, (2004).
[CrossRef]

Higo, A.

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Houdré, R.

B. Wil, R. Ferrini, R. Houdré, M. Mulot, S. Anand, C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848, (2004).
[CrossRef]

Hugonin, J. P.

Ph. Lalanne, S. Mias, J. P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-466, (2004).
[CrossRef] [PubMed]

Ph. Lalanne, J. P. Hugonin, "Bloch-wave engineering for high Q’s, small V’s microcavities," IEEE J. Quantum Electron. 39, 1430-1438, (2003).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610, (2000).
[CrossRef] [PubMed]

Ishida, S.

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Iwamoto, S.

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780, (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11, (1998).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780, (1999).
[CrossRef]

Kafesaki, M.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar, "Controlling the Resonance of Photonic Crystal Microcavity by a Near-Field Probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

Kamp, M.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769, (2003).
[CrossRef]

Klopf, F.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769, (2003).
[CrossRef]

Koenderink, A. F.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar, "Controlling the Resonance of Photonic Crystal Microcavity by a Near-Field Probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780, (1999).
[CrossRef]

Kuarmochi, E.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuarmochi, H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1554-1561 (2004).
[CrossRef]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Lalanne, Ph.

Ph. Lalanne, S. Mias, J. P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-466, (2004).
[CrossRef] [PubMed]

Ph. Lalanne, J. P. Hugonin, "Bloch-wave engineering for high Q’s, small V’s microcavities," IEEE J. Quantum Electron. 39, 1430-1438, (2003).
[CrossRef]

Lee, J.-B.

W. Park, J.-B. Lee, "Mechanically tunable photonic crystal structure," App. Phys. Lett. 85, 4845-4847, (2004).
[CrossRef]

Letartre, X.

Levenson, A.

Loncar, M.

M. Lončar, T. Yoshie, A. Scherer, "Low threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Tev. E 65, 016608, (2001).
[CrossRef]

Lyan, P.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 011604, (2006).
[CrossRef]

Mabuchi, H.

J. Vučković, M. Lončar, H. Mabuchi, A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Tev. E 65, 016608, (2001).
[CrossRef]

Märki, I.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 011604, (2006).
[CrossRef]

I. Märki, M. Salt and H. P. Herzig, "Practical and theoretical modal analysis of photonic crystal waveguides," J. Appl. Phys. 95, 7-11, (2004).
[CrossRef]

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Mias, S.

Mitsugi, S.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuarmochi, H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1554-1561 (2004).
[CrossRef]

Monnier, P.

Mulot, M.

B. Wil, R. Ferrini, R. Houdré, M. Mulot, S. Anand, C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848, (2004).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B-S Song, S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214, (2005).
[CrossRef] [PubMed]

Y. Akahana, T. Asano, B-S Song, S. Noda, "High-Q photonic nanocavity in two-dimensional photonic crystal," Nature 425, 944-947, (2003).
[CrossRef]

S. Noda, A. Chutinan, M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610, (2000).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuarmochi, H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1554-1561 (2004).
[CrossRef]

Ouyang, H.

Painter, O.

Park, W.

W. Park, J.-B. Lee, "Mechanically tunable photonic crystal structure," App. Phys. Lett. 85, 4845-4847, (2004).
[CrossRef]

Prather, D. W.

A. Sharkawy, S. Shi, D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides", Opt. Express 10, 1048-1059, (2002).
[PubMed]

D. M. Pustai, A. Sharkawy, S. Shi, D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opitcs 41, 5574-5579, (2002).
[CrossRef]

Psaltis, D.

Pustai, D. M.

D. M. Pustai, A. Sharkawy, S. Shi, D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opitcs 41, 5574-5579, (2002).
[CrossRef]

Rai, R.

Raineri, F.

Reithmaier, J. P.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769, (2003).
[CrossRef]

Rockwood, T.

Ryu, H-Y.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuarmochi, H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1554-1561 (2004).
[CrossRef]

Salt, M.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 011604, (2006).
[CrossRef]

I. Märki, M. Salt and H. P. Herzig, "Practical and theoretical modal analysis of photonic crystal waveguides," J. Appl. Phys. 95, 7-11, (2004).
[CrossRef]

Sandoghdar, V.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar, "Controlling the Resonance of Photonic Crystal Microcavity by a Near-Field Probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

Scherer, A.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, D. Psaltis, "Nanofluidic tuning of photonic crystal circuits", Opt. Lett. 31, 59-61, (2006).
[CrossRef] [PubMed]

M. Lončar, T. Yoshie, A. Scherer, "Low threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Tev. E 65, 016608, (2001).
[CrossRef]

C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696, (1995).
[CrossRef]

Schuller, Ch.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769, (2003).
[CrossRef]

Seassal, C.

Sharkawy, A.

A. Sharkawy, S. Shi, D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides", Opt. Express 10, 1048-1059, (2002).
[PubMed]

D. M. Pustai, A. Sharkawy, S. Shi, D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opitcs 41, 5574-5579, (2002).
[CrossRef]

Shi, S.

D. M. Pustai, A. Sharkawy, S. Shi, D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opitcs 41, 5574-5579, (2002).
[CrossRef]

A. Sharkawy, S. Shi, D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides", Opt. Express 10, 1048-1059, (2002).
[PubMed]

Shinya, A.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuarmochi, H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1554-1561 (2004).
[CrossRef]

Smith, C. J. M.

B. Wil, R. Ferrini, R. Houdré, M. Mulot, S. Anand, C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848, (2004).
[CrossRef]

Song, B-S

Y. Akahane, T. Asano, B-S Song, S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214, (2005).
[CrossRef] [PubMed]

Y. Akahana, T. Asano, B-S Song, S. Noda, "High-Q photonic nanocavity in two-dimensional photonic crystal," Nature 425, 944-947, (2003).
[CrossRef]

Srinivasan, K.

Stanley, R.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, J. M. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 011604, (2006).
[CrossRef]

Tokushima, M.

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Toshiyoshi, H.

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Viktorovitch, P.

Villeneuve, P.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780, (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11, (1998).
[CrossRef] [PubMed]

Vuckovic, J.

J. Vučković, M. Lončar, H. Mabuchi, A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Tev. E 65, 016608, (2001).
[CrossRef]

Weiland, T.

T. Weiland, "A discretization method for the solution of Maxwell’s equations for six-component fields," Electron. Commun. 31, 116-120, 1977.

Weiss, S. M.

Wil, B.

B. Wil, R. Ferrini, R. Houdré, M. Mulot, S. Anand, C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848, (2004).
[CrossRef]

Yablonovitch, E.

Yamada, H.

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Yoshie, T.

M. Lončar, T. Yoshie, A. Scherer, "Low threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Zhang, J

App. Phys. Lett. (2)

W. Park, J.-B. Lee, "Mechanically tunable photonic crystal structure," App. Phys. Lett. 85, 4845-4847, (2004).
[CrossRef]

S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, "Observation of micromechanically controlled tuning of photonic line-defect waveguide," App. Phys. Lett. 88, 011104 (2006).
[CrossRef]

Appl. Opitcs (1)

D. M. Pustai, A. Sharkawy, S. Shi, D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opitcs 41, 5574-5579, (2002).
[CrossRef]

Appl. Phys. Lett. (3)

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769, (2003).
[CrossRef]

B. Wil, R. Ferrini, R. Houdré, M. Mulot, S. Anand, C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848, (2004).
[CrossRef]

M. Lončar, T. Yoshie, A. Scherer, "Low threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Electron. Commun. (1)

T. Weiland, "A discretization method for the solution of Maxwell’s equations for six-component fields," Electron. Commun. 31, 116-120, 1977.

IEEE J. Quantum Electron. (1)

Ph. Lalanne, J. P. Hugonin, "Bloch-wave engineering for high Q’s, small V’s microcavities," IEEE J. Quantum Electron. 39, 1430-1438, (2003).
[CrossRef]

J. Appl. Phys. (1)

I. Märki, M. Salt and H. P. Herzig, "Practical and theoretical modal analysis of photonic crystal waveguides," J. Appl. Phys. 95, 7-11, (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696, (1995).
[CrossRef]

Nature (2)

Y. Akahana, T. Asano, B-S Song, S. Noda, "High-Q photonic nanocavity in two-dimensional photonic crystal," Nature 425, 944-947, (2003).
[CrossRef]

S. Noda, A. Chutinan, M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610, (2000).
[CrossRef] [PubMed]

Opt. Express (9)

M. Notomi, A. Shinya, S. Mitsugi, E. Kuarmochi, H-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1554-1561 (2004).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11, (1998).
[CrossRef] [PubMed]

Ph. Lalanne, S. Mias, J. P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-466, (2004).
[CrossRef] [PubMed]

K. Srinivasan, O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684, (2002).
[PubMed]

Y. Akahane, T. Asano, B-S Song, S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214, (2005).
[CrossRef] [PubMed]

E. A. Camargo, H. M. H. Chong and R. M. De La Rue, "2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure," Opt. Express 12, 588-592, (2004).
[CrossRef] [PubMed]

A. Sharkawy, S. Shi, D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides", Opt. Express 10, 1048-1059, (2002).
[PubMed]

S. M. Weiss, H. Ouyang, J Zhang, Ph. M. Fauchet, "Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals," Opt. Express 13, 1090-1097, (2005).
[CrossRef] [PubMed]

P. E. Barclay, K. Srinivasan, O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820, (2005).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (2)

S. W. Leaonard H. M. van Driel, J. Schilling and R. B. Wehrsporn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102, (2002).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780, (1999).
[CrossRef]

Phys. Rev. Lett. (2)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar, "Controlling the Resonance of Photonic Crystal Microcavity by a Near-Field Probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

Phys. Tev. E (1)

J. Vučković, M. Lončar, H. Mabuchi, A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Tev. E 65, 016608, (2001).
[CrossRef]

Other (2)

J. D. Joannopoulos, R. D. Maede, J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, (1995).

T. Takahata, K. Hoshino, K. Matsumoto, I. Shimoyama, "Photonic crystal tuned by cantilever", 18th IEEE International Conference on Micro Electro Mechanical Systems, Miami, Florida, USA, January 30 - February 3, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

In-plane photonic crystal microcavity membrane consisting of a triangular array of cylindrical holes (period 520 nm and hole radius 182 nm) in a thin Si membrane layer (thickness 205 nm) surrounded by air.

Fig. 2.
Fig. 2.

(a) Measured transmission spectrum of a photonic crystal cavity structure in a membrane surrounded by air with a Q factor of approximately 750. The characteristic Fabry-Perot interference pattern at resonance is mainly due to end-facet reflections corresponding to a total waveguide length of 2 mm where as off resonance the interference pattern (2 times longer peak separation) is mainly due to end-facet to cavity reflections corresponding to an optical path of 1 mm (cavity structure is situated in the middle of the waveguide). (b) Calculated transmission spectrum of the ideal photonic crystal cavity structure with a Q factor in the order of 1500. The inset shows the calculated field distribution (magnetic field perpendicular to the photonic crystal membrane) at the resonance wavelength.

Fig. 3.
Fig. 3.

Silicon AFM tip positioned above the cavity center perturbing the confined optical field in order to induce on-off switching.

Fig. 4.
Fig. 4.

(a) Simulated changes in the transmission properties of a resonant microcavity structure when probing the center of the cavity by a silicon tip. The closer the silicon tip is to the surface of the membrane (tip-surface distance: 1) 500 nm, 2) 375 nm, 3) 0 nm) the stronger is the damping effect on the transmission efficiency. The inset shows the absolute value of the calculated field distribution in the x-y plane through the center of the resonant cavity with the probing AFM tip.(b) Measured changes in the transmission properties of resonant microcavity structure when probing the center of the cavity by a silicon tip. 1) Measured transmission spectrum without the probing AFM tip. 2) Measured transmission spectrum with the AFM tip positioned on the center of the cavity using the static force mode.

Fig. 5.
Fig. 5.

Measured transmitted signal modulated at ~180 kHz by the AFM tip in the dynamic mode with the corresponding resonance frequency of the cantilever. The observed parasitic, small amplitude oscillations are most probably due to mechanical vibrations perturbing the cantilever modulation.

Fig. 6.
Fig. 6.

Silicon AFM tip inserted into one of the holes of the Bragg mirror forming the cavity in order to induce wavelength tuning.

Fig. 7.
Fig. 7.

(a) Simulated changes in the transmission properties of a resonant microcavity structure when inserting a silicon tip into one of the Bragg mirror holes at the etch of the cavity. The tuning strength depends on the silicon tip position (tip - membrane surface distance: 1) 0 nm, 2) -100 nm and 3) -200 nm). The inset shows the absolute value of the calculated field distribution in the x-z plane through the center of the photonic crystal waveguide with the probing AFM tip. (b) Measured changes in the transmission properties of the resonant microcavity structure when inserting a silicon tip into one of the Bragg mirror holes. 1) Measured transmission spectrum without AFM tip. 2) Measured transmission spectrum with an AFM tip inserted into one of the Bragg mirror holes using the static force mode.

Metrics