Abstract

In this paper, we have implemented and compared two complementary time-domain models that have been widely used for the simulation of SOAs. One of the key differences between them lies in their treatment of the material (gain and refractive index) dispersion. One model named as a spectrum slicing model (SSM) is desirable for the simulation of broadband behaviours of SOAs, but not for the nonlinear effect such as the intermodulation distortion, since the gain dispersion is considered by slicing the entire spontaneous emission spectrum into many stripes. The other model based on effective Bloch equations (EBE’s) is capable of dealing with the SOA nonlinear effects with the material dispersion incorporated explicitly through the susceptibility, but can’t capture the broadband behaviours. Both of them, however, can readily handle the SOA characteristics such as the fibre-to-fibre gain, noise, and crosstalk. Through a direct comparison between them, we have shown that they are in generally good agreement. A discussion on detailed implementations and each model’s salient features is also presented.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA

Perrine Berger, Jérôme Bourderionnet, Mehdi Alouini, Fabien Bretenaker, and Daniel Dolfi
Opt. Express 17(22) 20584-20597 (2009)

A theoretical model for sampled grating DBR laser integrated with SOA and MZ modulator

Lei Dong, Shengzhi Zhao, Shan Jiang, and Shuihua Liu
Opt. Express 17(19) 16756-16765 (2009)

Theoretical investigation of the role of optically induced carrier pulsations in wave mixing in semiconductor optical amplifiers

Simeon N. Kaunga-Nyirenda, Michal P. Dlubek, Andrew J. Phillips, Jun Jun Lim, Eric C. Larkins, and Slawomir Sujecki
J. Opt. Soc. Am. B 27(2) 168-178 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Menne, “Analysis of the uniform rate equation model of laser dynamics,” IEEE J. Quantum Electron. 2, 38–44 (1966).
    [Crossref]
  2. C. Tombling, T. Saitoh, and T. Mukai, “Performance predictions for vertical-cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491–2499 (1994).
    [Crossref]
  3. J. Piprek, S. BjÖrlin, and J. E. Bowers, “Design and analysis of vertical-cavity semiconductor optical amplifiers,” IEEE J. Quantum Electron. 37, 127–134 (2001).
    [Crossref]
  4. W. Li, W.-P. Huang, X. Li, and J. Hong, “Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation,” IEEE J. Quantum Electron. 36, 1110–1116 (2000).
    [Crossref]
  5. L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
    [Crossref]
  6. A. J. Lowery, “New dynamic semiconductor laser model based on the transmission line modeling method,” IEE Proc. J. 134, 281–289 (1987).
  7. E. Gehrig, O. Hess, and R. Wallenstein, “Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory,” IEEE J. Quantum Electron. 35, 320–331 (1999).
    [Crossref]
  8. M. Kolesik and J. V. Moloney, “A spatial digital filter method for broadband simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
    [Crossref]
  9. G. P. Agrawal, “Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 27, 1843–1849 (1991).
    [Crossref]
  10. C. Bowden and G. P. Agrawal, “Maxwell-Bloch formulation for semiconductors: Effects of coherent Coulomb exchange,” Phys. Rev. A 51, 4132–4139 (1995).
    [Crossref] [PubMed]
  11. M. Homar, J. V. Moloney, and M. San Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32, 553–566 (1996).
    [Crossref]
  12. G. C. Dente and M. L. Tilton, “Modeling multiple-longitudinal-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 34, 325–335 (1998).
    [Crossref]
  13. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, “Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and inter-modulation distortion,” J. Lightwave Technol. 10, 1056–1065 (1992).
    [Crossref]
  14. A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
    [Crossref]
  15. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
    [Crossref]
  16. C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, “A first-principle fully space-time resolved model of a semiconductor laser,” Quantum Semiclassic. Opt. 9, 681–691 (1997).
    [Crossref]
  17. U. Bandelow, M. Radziunas, J. Sieber, and M. Wolfrum, “Impact of gain dispersion on the Spatio-temperal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
    [Crossref]
  18. M. Bahl, H. Rao, N. C. Panoiu, and R. M. Osgood, Jr, “Simulation of mode-locked surface-emitting lasers through a finite-difference time-domain algorithm,” Opt. Lett. 29, 1689–1691 (2004).
    [Crossref] [PubMed]
  19. M. A. Summerfield and R. S. Tucker, “Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 5, 839–850 (1999).
    [Crossref]
  20. M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–1103 (2001).
    [Crossref]
  21. M. J. Connelly, “Wideband dynamic numerical model of a tapered buried ridge stripe semiconductor optical amplifier gate,” IEE Proc.: Circuits Devices Syst. 149, 173–178 (2002).
    [Crossref]
  22. J. W. Park, X. Li, and W. P. Huang, “Comparative study on mixed frequency-time-domain models of semiconductor laser optical amplifiers,” IEE Proc.: Optoelectron. 152, 151–159 (2005).
    [Crossref]
  23. G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” (Van Nostrand Reinhold, New York, 1993).
  24. C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
    [Crossref]
  25. W. H. Press, B. P. Flannery, S. A. Teukolssy, and W. T. Vetterling, “Numerical Recipes: The art of Scientific Computing,” (Cambridge Univ. Press, Cambridge, MA, 1986).
  26. G. P. Agrawal, “Fiber-optic communication systems,” 3rd edition, (Wiley-Interscience, 2002).
    [Crossref]
  27. J. Sun, G. Morthier, and R. Baets, “Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1162–1167 (1997).
    [Crossref]
  28. H. E. Lassen, P. B. Hansen, and K. E. Stubkjaer, “Crosstalk in 1.5μm InGaAsP optical amplifiers,” J. Lightwave Technol. 6, 1559–1565 (1988).
    [Crossref]

2005 (1)

J. W. Park, X. Li, and W. P. Huang, “Comparative study on mixed frequency-time-domain models of semiconductor laser optical amplifiers,” IEE Proc.: Optoelectron. 152, 151–159 (2005).
[Crossref]

2004 (1)

2002 (1)

M. J. Connelly, “Wideband dynamic numerical model of a tapered buried ridge stripe semiconductor optical amplifier gate,” IEE Proc.: Circuits Devices Syst. 149, 173–178 (2002).
[Crossref]

2001 (4)

M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–1103 (2001).
[Crossref]

J. Piprek, S. BjÖrlin, and J. E. Bowers, “Design and analysis of vertical-cavity semiconductor optical amplifiers,” IEEE J. Quantum Electron. 37, 127–134 (2001).
[Crossref]

M. Kolesik and J. V. Moloney, “A spatial digital filter method for broadband simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
[Crossref]

U. Bandelow, M. Radziunas, J. Sieber, and M. Wolfrum, “Impact of gain dispersion on the Spatio-temperal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[Crossref]

2000 (1)

W. Li, W.-P. Huang, X. Li, and J. Hong, “Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation,” IEEE J. Quantum Electron. 36, 1110–1116 (2000).
[Crossref]

1999 (2)

E. Gehrig, O. Hess, and R. Wallenstein, “Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory,” IEEE J. Quantum Electron. 35, 320–331 (1999).
[Crossref]

M. A. Summerfield and R. S. Tucker, “Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 5, 839–850 (1999).
[Crossref]

1998 (1)

G. C. Dente and M. L. Tilton, “Modeling multiple-longitudinal-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 34, 325–335 (1998).
[Crossref]

1997 (4)

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[Crossref]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, “A first-principle fully space-time resolved model of a semiconductor laser,” Quantum Semiclassic. Opt. 9, 681–691 (1997).
[Crossref]

J. Sun, G. Morthier, and R. Baets, “Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1162–1167 (1997).
[Crossref]

1996 (1)

M. Homar, J. V. Moloney, and M. San Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32, 553–566 (1996).
[Crossref]

1995 (1)

C. Bowden and G. P. Agrawal, “Maxwell-Bloch formulation for semiconductors: Effects of coherent Coulomb exchange,” Phys. Rev. A 51, 4132–4139 (1995).
[Crossref] [PubMed]

1994 (2)

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[Crossref]

C. Tombling, T. Saitoh, and T. Mukai, “Performance predictions for vertical-cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491–2499 (1994).
[Crossref]

1992 (1)

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, “Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and inter-modulation distortion,” J. Lightwave Technol. 10, 1056–1065 (1992).
[Crossref]

1991 (1)

G. P. Agrawal, “Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 27, 1843–1849 (1991).
[Crossref]

1988 (1)

H. E. Lassen, P. B. Hansen, and K. E. Stubkjaer, “Crosstalk in 1.5μm InGaAsP optical amplifiers,” J. Lightwave Technol. 6, 1559–1565 (1988).
[Crossref]

1987 (1)

A. J. Lowery, “New dynamic semiconductor laser model based on the transmission line modeling method,” IEE Proc. J. 134, 281–289 (1987).

1981 (1)

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

1966 (1)

T. J. Menne, “Analysis of the uniform rate equation model of laser dynamics,” IEEE J. Quantum Electron. 2, 38–44 (1966).
[Crossref]

Agrawal, G. P.

C. Bowden and G. P. Agrawal, “Maxwell-Bloch formulation for semiconductors: Effects of coherent Coulomb exchange,” Phys. Rev. A 51, 4132–4139 (1995).
[Crossref] [PubMed]

G. P. Agrawal, “Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 27, 1843–1849 (1991).
[Crossref]

G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” (Van Nostrand Reinhold, New York, 1993).

G. P. Agrawal, “Fiber-optic communication systems,” 3rd edition, (Wiley-Interscience, 2002).
[Crossref]

Baets, R.

J. Sun, G. Morthier, and R. Baets, “Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1162–1167 (1997).
[Crossref]

Bahl, M.

Bandelow, U.

U. Bandelow, M. Radziunas, J. Sieber, and M. Wolfrum, “Impact of gain dispersion on the Spatio-temperal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[Crossref]

Bertness, K. A.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

BjÖrlin, S.

J. Piprek, S. BjÖrlin, and J. E. Bowers, “Design and analysis of vertical-cavity semiconductor optical amplifiers,” IEEE J. Quantum Electron. 37, 127–134 (2001).
[Crossref]

Bowden, C.

C. Bowden and G. P. Agrawal, “Maxwell-Bloch formulation for semiconductors: Effects of coherent Coulomb exchange,” Phys. Rev. A 51, 4132–4139 (1995).
[Crossref] [PubMed]

Bowers, J. E.

J. Piprek, S. BjÖrlin, and J. E. Bowers, “Design and analysis of vertical-cavity semiconductor optical amplifiers,” IEEE J. Quantum Electron. 37, 127–134 (2001).
[Crossref]

Carroll, J. E.

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[Crossref]

Connelly, M. J.

M. J. Connelly, “Wideband dynamic numerical model of a tapered buried ridge stripe semiconductor optical amplifier gate,” IEE Proc.: Circuits Devices Syst. 149, 173–178 (2002).
[Crossref]

M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–1103 (2001).
[Crossref]

Dente, G. C.

G. C. Dente and M. L. Tilton, “Modeling multiple-longitudinal-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 34, 325–335 (1998).
[Crossref]

Durhuus, T.

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, “Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and inter-modulation distortion,” J. Lightwave Technol. 10, 1056–1065 (1992).
[Crossref]

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” (Van Nostrand Reinhold, New York, 1993).

Egan, A.

C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, “A first-principle fully space-time resolved model of a semiconductor laser,” Quantum Semiclassic. Opt. 9, 681–691 (1997).
[Crossref]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolssy, and W. T. Vetterling, “Numerical Recipes: The art of Scientific Computing,” (Cambridge Univ. Press, Cambridge, MA, 1986).

Gehrig, E.

E. Gehrig, O. Hess, and R. Wallenstein, “Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory,” IEEE J. Quantum Electron. 35, 320–331 (1999).
[Crossref]

Hansen, P. B.

H. E. Lassen, P. B. Hansen, and K. E. Stubkjaer, “Crosstalk in 1.5μm InGaAsP optical amplifiers,” J. Lightwave Technol. 6, 1559–1565 (1988).
[Crossref]

Henry, C. H.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

Hess, O.

E. Gehrig, O. Hess, and R. Wallenstein, “Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory,” IEEE J. Quantum Electron. 35, 320–331 (1999).
[Crossref]

Homar, M.

M. Homar, J. V. Moloney, and M. San Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32, 553–566 (1996).
[Crossref]

Hong, J.

W. Li, W.-P. Huang, X. Li, and J. Hong, “Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation,” IEEE J. Quantum Electron. 36, 1110–1116 (2000).
[Crossref]

Huang, W. P.

J. W. Park, X. Li, and W. P. Huang, “Comparative study on mixed frequency-time-domain models of semiconductor laser optical amplifiers,” IEE Proc.: Optoelectron. 152, 151–159 (2005).
[Crossref]

Huang, W.-P.

W. Li, W.-P. Huang, X. Li, and J. Hong, “Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation,” IEEE J. Quantum Electron. 36, 1110–1116 (2000).
[Crossref]

Indik, R. A.

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, “A first-principle fully space-time resolved model of a semiconductor laser,” Quantum Semiclassic. Opt. 9, 681–691 (1997).
[Crossref]

Kolesik, M.

M. Kolesik and J. V. Moloney, “A spatial digital filter method for broadband simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
[Crossref]

Lassen, H. E.

H. E. Lassen, P. B. Hansen, and K. E. Stubkjaer, “Crosstalk in 1.5μm InGaAsP optical amplifiers,” J. Lightwave Technol. 6, 1559–1565 (1988).
[Crossref]

Li, W.

W. Li, W.-P. Huang, X. Li, and J. Hong, “Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation,” IEEE J. Quantum Electron. 36, 1110–1116 (2000).
[Crossref]

Li, X.

J. W. Park, X. Li, and W. P. Huang, “Comparative study on mixed frequency-time-domain models of semiconductor laser optical amplifiers,” IEE Proc.: Optoelectron. 152, 151–159 (2005).
[Crossref]

W. Li, W.-P. Huang, X. Li, and J. Hong, “Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation,” IEEE J. Quantum Electron. 36, 1110–1116 (2000).
[Crossref]

Logan, R. A.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

Lowery, A. J.

A. J. Lowery, “New dynamic semiconductor laser model based on the transmission line modeling method,” IEE Proc. J. 134, 281–289 (1987).

Marcenac, D. D.

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[Crossref]

Mecozzi, A.

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[Crossref]

Menne, T. J.

T. J. Menne, “Analysis of the uniform rate equation model of laser dynamics,” IEEE J. Quantum Electron. 2, 38–44 (1966).
[Crossref]

Miguel, M. San

M. Homar, J. V. Moloney, and M. San Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32, 553–566 (1996).
[Crossref]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, “Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and inter-modulation distortion,” J. Lightwave Technol. 10, 1056–1065 (1992).
[Crossref]

Moloney, J. V.

M. Kolesik and J. V. Moloney, “A spatial digital filter method for broadband simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
[Crossref]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, “A first-principle fully space-time resolved model of a semiconductor laser,” Quantum Semiclassic. Opt. 9, 681–691 (1997).
[Crossref]

M. Homar, J. V. Moloney, and M. San Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32, 553–566 (1996).
[Crossref]

Mork, J.

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[Crossref]

Morthier, G.

J. Sun, G. Morthier, and R. Baets, “Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1162–1167 (1997).
[Crossref]

Mukai, T.

C. Tombling, T. Saitoh, and T. Mukai, “Performance predictions for vertical-cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491–2499 (1994).
[Crossref]

Ning, C. Z.

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, “A first-principle fully space-time resolved model of a semiconductor laser,” Quantum Semiclassic. Opt. 9, 681–691 (1997).
[Crossref]

Nowell, M.

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[Crossref]

Osgood, R. M.

Panoiu, N. C.

Park, J. W.

J. W. Park, X. Li, and W. P. Huang, “Comparative study on mixed frequency-time-domain models of semiconductor laser optical amplifiers,” IEE Proc.: Optoelectron. 152, 151–159 (2005).
[Crossref]

Piprek, J.

J. Piprek, S. BjÖrlin, and J. E. Bowers, “Design and analysis of vertical-cavity semiconductor optical amplifiers,” IEEE J. Quantum Electron. 37, 127–134 (2001).
[Crossref]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolssy, and W. T. Vetterling, “Numerical Recipes: The art of Scientific Computing,” (Cambridge Univ. Press, Cambridge, MA, 1986).

Radziunas, M.

U. Bandelow, M. Radziunas, J. Sieber, and M. Wolfrum, “Impact of gain dispersion on the Spatio-temperal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[Crossref]

Rao, H.

Saitoh, T.

C. Tombling, T. Saitoh, and T. Mukai, “Performance predictions for vertical-cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491–2499 (1994).
[Crossref]

Sieber, J.

U. Bandelow, M. Radziunas, J. Sieber, and M. Wolfrum, “Impact of gain dispersion on the Spatio-temperal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[Crossref]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, “Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and inter-modulation distortion,” J. Lightwave Technol. 10, 1056–1065 (1992).
[Crossref]

H. E. Lassen, P. B. Hansen, and K. E. Stubkjaer, “Crosstalk in 1.5μm InGaAsP optical amplifiers,” J. Lightwave Technol. 6, 1559–1565 (1988).
[Crossref]

Summerfield, M. A.

M. A. Summerfield and R. S. Tucker, “Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 5, 839–850 (1999).
[Crossref]

Sun, J.

J. Sun, G. Morthier, and R. Baets, “Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1162–1167 (1997).
[Crossref]

Teukolssy, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolssy, and W. T. Vetterling, “Numerical Recipes: The art of Scientific Computing,” (Cambridge Univ. Press, Cambridge, MA, 1986).

Tilton, M. L.

G. C. Dente and M. L. Tilton, “Modeling multiple-longitudinal-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 34, 325–335 (1998).
[Crossref]

Tombling, C.

C. Tombling, T. Saitoh, and T. Mukai, “Performance predictions for vertical-cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491–2499 (1994).
[Crossref]

Tucker, R. S.

M. A. Summerfield and R. S. Tucker, “Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 5, 839–850 (1999).
[Crossref]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolssy, and W. T. Vetterling, “Numerical Recipes: The art of Scientific Computing,” (Cambridge Univ. Press, Cambridge, MA, 1986).

Wallenstein, R.

E. Gehrig, O. Hess, and R. Wallenstein, “Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory,” IEEE J. Quantum Electron. 35, 320–331 (1999).
[Crossref]

Wolfrum, M.

U. Bandelow, M. Radziunas, J. Sieber, and M. Wolfrum, “Impact of gain dispersion on the Spatio-temperal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[Crossref]

Yu, S. F.

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[Crossref]

Zhang, L. M.

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[Crossref]

IEE Proc. J. (1)

A. J. Lowery, “New dynamic semiconductor laser model based on the transmission line modeling method,” IEE Proc. J. 134, 281–289 (1987).

IEE Proc.: Circuits Devices Syst. (1)

M. J. Connelly, “Wideband dynamic numerical model of a tapered buried ridge stripe semiconductor optical amplifier gate,” IEE Proc.: Circuits Devices Syst. 149, 173–178 (2002).
[Crossref]

IEE Proc.: Optoelectron. (1)

J. W. Park, X. Li, and W. P. Huang, “Comparative study on mixed frequency-time-domain models of semiconductor laser optical amplifiers,” IEE Proc.: Optoelectron. 152, 151–159 (2005).
[Crossref]

IEEE J. Quantum Electron. (13)

M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–1103 (2001).
[Crossref]

E. Gehrig, O. Hess, and R. Wallenstein, “Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory,” IEEE J. Quantum Electron. 35, 320–331 (1999).
[Crossref]

M. Kolesik and J. V. Moloney, “A spatial digital filter method for broadband simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
[Crossref]

G. P. Agrawal, “Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 27, 1843–1849 (1991).
[Crossref]

T. J. Menne, “Analysis of the uniform rate equation model of laser dynamics,” IEEE J. Quantum Electron. 2, 38–44 (1966).
[Crossref]

C. Tombling, T. Saitoh, and T. Mukai, “Performance predictions for vertical-cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491–2499 (1994).
[Crossref]

J. Piprek, S. BjÖrlin, and J. E. Bowers, “Design and analysis of vertical-cavity semiconductor optical amplifiers,” IEEE J. Quantum Electron. 37, 127–134 (2001).
[Crossref]

W. Li, W.-P. Huang, X. Li, and J. Hong, “Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation,” IEEE J. Quantum Electron. 36, 1110–1116 (2000).
[Crossref]

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994).
[Crossref]

M. Homar, J. V. Moloney, and M. San Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32, 553–566 (1996).
[Crossref]

G. C. Dente and M. L. Tilton, “Modeling multiple-longitudinal-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 34, 325–335 (1998).
[Crossref]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[Crossref]

U. Bandelow, M. Radziunas, J. Sieber, and M. Wolfrum, “Impact of gain dispersion on the Spatio-temperal dynamics of multisection lasers,” IEEE J. Quantum Electron. 37, 183–188 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[Crossref]

M. A. Summerfield and R. S. Tucker, “Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 5, 839–850 (1999).
[Crossref]

J. Sun, G. Morthier, and R. Baets, “Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1162–1167 (1997).
[Crossref]

J. Appl. Phys. (1)

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[Crossref]

J. Lightwave Technol. (2)

H. E. Lassen, P. B. Hansen, and K. E. Stubkjaer, “Crosstalk in 1.5μm InGaAsP optical amplifiers,” J. Lightwave Technol. 6, 1559–1565 (1988).
[Crossref]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, “Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and inter-modulation distortion,” J. Lightwave Technol. 10, 1056–1065 (1992).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

C. Bowden and G. P. Agrawal, “Maxwell-Bloch formulation for semiconductors: Effects of coherent Coulomb exchange,” Phys. Rev. A 51, 4132–4139 (1995).
[Crossref] [PubMed]

Quantum Semiclassic. Opt. (1)

C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, “A first-principle fully space-time resolved model of a semiconductor laser,” Quantum Semiclassic. Opt. 9, 681–691 (1997).
[Crossref]

Other (3)

W. H. Press, B. P. Flannery, S. A. Teukolssy, and W. T. Vetterling, “Numerical Recipes: The art of Scientific Computing,” (Cambridge Univ. Press, Cambridge, MA, 1986).

G. P. Agrawal, “Fiber-optic communication systems,” 3rd edition, (Wiley-Interscience, 2002).
[Crossref]

G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” (Van Nostrand Reinhold, New York, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Average output power as a function of the time step dt at I=140mA when the input Gaussian-pulse power with 10ns 1/e-width at 1538.9nm is -17dBm and L=700μm.

Fig. 2.
Fig. 2.

Waveform of the input envelope for the channel spacing of (a) 400MHz and (b) 2GHz when the input signal envelope consists of identical Gaussian pulses with 10ns 1/e-width in two different channels; Ch1 at 1538.9nm (reference channel) and Ch2 at 1538.89684nm.

Fig. 3.
Fig. 3.

Average output envelope power as a function of the channel spacing at I=140mA when the average input envelope power [Fig. 2(a)] is -13.63dBm and L=700μm.

Fig. 4.
Fig. 4.

ASE spectra of SOA and GC-SOA with a lasing mode at 1514nm, both simulated with the SSM at I=140mA when the resolution bandwidth is 51GHz and L=700μm. The grating coupling coefficient is 6cm-1 and the length of the DBR sections is 200μm under no current injection.

Fig. 5.
Fig. 5.

Gaussian-pulse propagation through the SOA for different pulse width (τ0 ) when the input power is 0dBm. Gaussian pulse is excited at 1538.9nm when I=160mA and L=700μm.

Fig. 6.
Fig. 6.

Input and output signal spectra of the SOA under the bias current of 140mA when the input signal envelope consists of identical Gaussian pulses with 4.5ns 1/e-width and peak power of -20dBm in two different channels (Ch1: 1538.9nm and Ch2: 1538.89684nm, channel spacing =400MHz).

Fig. 7.
Fig. 7.

(a) Input and output signal spectra of the SOA under the bias current of 140mA when the input signal envelope consists of identical Gaussian pulses with 10ns 1/e-width and peak power of -15dBm in two different channels (Ch1: 1538.9nm and Ch2: 1538.89684nm) and (b) relative intermodulation distortion (IMD) as a function of the Ch2 input power when the Ch1 input power is -20dBm.

Fig. 8.
Fig. 8.

Fibre-to-fibre gain and noise figure as a function of the input signal power at 1538.9nm under the bias current of 140mA for L=700μm.

Fig. 9.
Fig. 9.

Output signal spectra of the SOA for different input powers of each channel under the bias current of 140mA when the channel spacing is 400MHz.

Fig. 10.
Fig. 10.

(a) Crosstalk versus the Ch2 input power at 1535.7nm when the Ch1 input power at 1538.9nm is -23dBm and I=140mA and (b) crosstalk as a function of the detuning frequency when the input power of each channel is -10dBm. The gain compression coefficient (ε 1) is 3×10-18cm3.

Tables (1)

Tables Icon

Table 1. Material and structural parameter values

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

( 1 ν g t ± z ) E ( f , r ) ( z , t ) = α s 2 E ( f , r ) ( z , t ) + j Γ β 2 ε o ε r [ P o ( f , r ) ( z , t ) + i P i ( f , r ) ( z , t ) ]
χ ( N , ω ) 2 ε r 1 / 2 δn ( N , ω ) j 1 β g ( N , ω )
g ( E ) = q 2 h 2 ε 0 m 0 2 c μ ̅ E ρ c ( E′ ) ρ ν ( E′ E ) M if 2 [ f c ( E′ ) + f ν ( E′ E ) 1 ] dE′
δn ( E ) = 1 2 π 2 P 0 1 E + E ( Δ g ( E′ ) Δ g ( E ) E′ E ) dE′ Δ g ( E ) 2 π 2 P 0 dE E 2 E 2
χ ( N , ω ) χ o ( N ) + i = 1 T A i ( N ) ω + ω o ω p ( N ) δ i ( N ) + j Γ i ( N )
χ o ( N ) = 2 ε r 1 / 2 δn o ( N ) j 1 β g o ( N )
P o ( f , r ) ( z , t ) = ε o ε r χ o ( N ) [ E ( f , r ) ( z , t ) + s ˜ ( f , r ) ( z , t ) ]
t P i ( f , r ) ( z , t ) = { Γ i ( N ) + j [ ω o ω p δ i ( N ) ] } P i ( f , r ) ( z , t ) j ε o ε r A i ( N ) E ( f , r ) ( z , t )
s ˜ ( f , , r ) ( z , t , λ o ) s ˜ * ( f , r ) ( z , t , λ o , ) = γ R sp ( z , t , λ o ) d z ν g δ ( z z′ ) δ ( t t′ ) δ ( λ o λ o′ )
N ( z , t ) t = η J qd [ A + BN ( z , t ) + C N 2 ( z , t ) ] N ( z , t )
+ j 4 ħ ω o ε o ε r [ P o f ( z , t ) + i = 1 T P i f ( z , t ) ] * E f ( z , t ) [ P o f ( z , t ) + i = 1 T P i f ( z , t ) ] E f * z t + [ P o r ( z , t ) + i = 1 T P i r ( z , t ) ] * E r ( z , t ) [ P o r ( z , t ) + i = 1 T P i r ( z , t ) ] E r * z t
1 ν g E ( f , r ) ( z , t , λ k ) t ± E ( f , r ) ( z , t , λ k ) z
= { j ( β ( λ k ) + 1 2 Γ α m g ( z , t , λ k ) ) + 1 2 ( Γ g ( z , t , λ k ) α s ) } E ( f , r ) ( z , t , λ k ) + s ˜ ( f , r ) ( z , t , λ k )
R sp ( E ) = Δ ν L 4 πq μ ̅ E ε 0 m 0 2 c 3 h ρ c ( E′ ) ρ ν ( E′ E ) M if 2 f c ( E′ ) f ν ( E′ E ) dE′
N ( z , t ) t = η J qd [ A + BN ( z , t ) + C N 2 ( z , t ) ] N ( z , t )
k = 1 N d Γ ν g g ( z , t , λ k ) E f ( z , t , λ k ) + E r ( z , t , λ k ) 2 .

Metrics