Abstract

We show that the various techniques commonly used to measure the linewidth enhancement factor can lead to different values when applied to quantum dot semiconductor lasers. Such behaviour is a direct consequence of the intrinsic capture/escape dynamics of quantum dot materials and of the free carrier plasma effects. This provides an explanation for the wide range of values experimentally measured and the linewidth re-broadening recently measured.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chich-ester, 1999).
  2. Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005).
    [CrossRef]
  3. M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
    [CrossRef]
  4. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
    [CrossRef]
  5. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
    [CrossRef]
  6. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
    [CrossRef]
  7. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor a of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
    [CrossRef]
  8. R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
    [CrossRef]
  9. Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold,” Electron. Lett. 28, 9–11 (1992).
    [CrossRef]
  10. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1991).
  11. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
    [CrossRef]
  12. J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004).
    [CrossRef]
  13. A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84, 1058–1060 (2004).
    [CrossRef]
  14. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003).
    [CrossRef]
  15. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
    [CrossRef]
  16. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004).
    [CrossRef]
  17. J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94, 1983–1989 (2003).
    [CrossRef]
  18. M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).
    [CrossRef]
  19. A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, “Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain,” Appl. Phys. Lett. 71, 1499–1501 (1998).
    [CrossRef]
  20. S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005).
    [CrossRef]
  21. H. C. Schneider, W. W. Chow, and S. W. Koch, “Anomalous carrier-induced dispersion in quantum-dot active media,” Phys. Rev. B 66, 041310 (2002).
    [CrossRef]
  22. H. C. Wong, G. B. Ren, and J. M. Rorison. ”Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quant. Electron. (to be published).
  23. H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004).
    [CrossRef]

2005 (4)

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005).
[CrossRef]

2004 (5)

H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004).
[CrossRef]

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
[CrossRef]

J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004).
[CrossRef]

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84, 1058–1060 (2004).
[CrossRef]

2003 (3)

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94, 1983–1989 (2003).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

2002 (1)

H. C. Schneider, W. W. Chow, and S. W. Koch, “Anomalous carrier-induced dispersion in quantum-dot active media,” Phys. Rev. B 66, 041310 (2002).
[CrossRef]

1999 (1)

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

1998 (1)

A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, “Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain,” Appl. Phys. Lett. 71, 1499–1501 (1998).
[CrossRef]

1997 (1)

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).
[CrossRef]

1992 (2)

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
[CrossRef]

Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold,” Electron. Lett. 28, 9–11 (1992).
[CrossRef]

1983 (1)

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor a of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

1982 (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[CrossRef]

Bhattacharya, P.

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005).
[CrossRef]

Bimberg, D.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chich-ester, 1999).

Birocheau, C.

Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold,” Electron. Lett. 28, 9–11 (1992).
[CrossRef]

Boggavarapu, D.

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
[CrossRef]

Borri, P.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
[CrossRef]

Bossert, D. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Boucher, Y.

A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, “Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain,” Appl. Phys. Lett. 71, 1499–1501 (1998).
[CrossRef]

Chen, J. X.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Chow, W. W.

H. C. Schneider, W. W. Chow, and S. W. Koch, “Anomalous carrier-induced dispersion in quantum-dot active media,” Phys. Rev. B 66, 041310 (2002).
[CrossRef]

Corbett, B.

S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005).
[CrossRef]

J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004).
[CrossRef]

Dagens, B.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Destrez, A.

Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold,” Electron. Lett. 28, 9–11 (1992).
[CrossRef]

Eliseev, P. G.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84, 1058–1060 (2004).
[CrossRef]

Fathpour, S.

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005).
[CrossRef]

Fiol, G.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

Fiore, A.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Fuchs, B.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

G., Huyet

J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004).
[CrossRef]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Gibbs, H. M.

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
[CrossRef]

Gray, A. L.

H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004).
[CrossRef]

Grundmann, M.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chich-ester, 1999).

Harder, C.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor a of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

Hassine, L.

Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold,” Electron. Lett. 28, 9–11 (1992).
[CrossRef]

Hegarty, S. P.

S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[CrossRef]

Houlihan, J.

J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004).
[CrossRef]

Hu, Y. Z.

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
[CrossRef]

Huyet, G.

S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005).
[CrossRef]

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Jacob, A.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

Jin, R.

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
[CrossRef]

Kettler, T.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Khitrova, G.

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
[CrossRef]

Koch, S. W.

H. C. Schneider, W. W. Chow, and S. W. Koch, “Anomalous carrier-induced dispersion in quantum-dot active media,” Phys. Rev. B 66, 041310 (2002).
[CrossRef]

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
[CrossRef]

Kovsh, A. R.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Kuntz, M.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

Laemmlin, M.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Lämmlin, M.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

Landreau, J.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Langbein, W.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
[CrossRef]

Le Bihan, J.

A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, “Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain,” Appl. Phys. Lett. 71, 1499–1501 (1998).
[CrossRef]

Le Gouezigou, O.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Ledentsov, N. N.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004).
[CrossRef]

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chich-ester, 1999).

Lester, L. F.

H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Make, D.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Malloy, K. J.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84, 1058–1060 (2004).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Markus, A.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

McInerney, J.

A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, “Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain,” Appl. Phys. Lett. 71, 1499–1501 (1998).
[CrossRef]

McInerney, J. G.

S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

McPeake, D.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004).
[CrossRef]

Mi, Z.

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005).
[CrossRef]

Mikhrin, S. S.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Mukai, K.

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).
[CrossRef]

Muszalski, J.

J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004).
[CrossRef]

Newell, T. C.

H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

O’Brien, D.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

O’Reilly, E. P.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004).
[CrossRef]

Oksanen, J.

J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94, 1983–1989 (2003).
[CrossRef]

Ouyang, D.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
[CrossRef]

Paranthoën, C.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1991).

Peyghambarian, N.

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
[CrossRef]

Provost, J.-G.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Ren, G. B.

H. C. Wong, G. B. Ren, and J. M. Rorison. ”Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quant. Electron. (to be published).

Rorison, J. M.

H. C. Wong, G. B. Ren, and J. M. Rorison. ”Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quant. Electron. (to be published).

Schneider, H. C.

H. C. Schneider, W. W. Chow, and S. W. Koch, “Anomalous carrier-induced dispersion in quantum-dot active media,” Phys. Rev. B 66, 041310 (2002).
[CrossRef]

Schneider, S.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
[CrossRef]

Schubert, C.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

Sellin, R. L.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
[CrossRef]

Shoji, H.

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).
[CrossRef]

Stintz, A.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84, 1058–1060 (2004).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

Su, H.

H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004).
[CrossRef]

Sugawara, M.

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).
[CrossRef]

Thedrez, B.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Toffano, Z.

Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold,” Electron. Lett. 28, 9–11 (1992).
[CrossRef]

Tulkki, J.

J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94, 1983–1989 (2003).
[CrossRef]

Ukhanov, A. A.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84, 1058–1060 (2004).
[CrossRef]

Umbach, A.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

Uskov, A. V.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004).
[CrossRef]

A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, “Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain,” Appl. Phys. Lett. 71, 1499–1501 (1998).
[CrossRef]

Ustinov, V. M.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Vahala, K.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor a of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

Wang, R.

H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004).
[CrossRef]

Woggon, U.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
[CrossRef]

Wong, H. C.

H. C. Wong, G. B. Ren, and J. M. Rorison. ”Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quant. Electron. (to be published).

Yariv, A.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor a of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

Zhang, L.

H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004).
[CrossRef]

Zhukov, A. E.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Appl. Phys. Lett. (7)

Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3μm tunnel injection quantum-dot lasers,” Appl. Phys. Lett. 86, 153109 (2005).
[CrossRef]

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor a of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983).
[CrossRef]

R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, “Linewidth broadening factor of a microcavity semiconductor laser,” Appl. Phys. Lett. 61, 1883–1885 (1992).
[CrossRef]

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84, 1058–1060 (2004).
[CrossRef]

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84, 272–274 (2004).
[CrossRef]

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71, 2791–2793 (1997).
[CrossRef]

A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, “Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantum efficiency and nonlinear gain,” Appl. Phys. Lett. 71, 1499–1501 (1998).
[CrossRef]

Electron. Lett. (6)

S. P. Hegarty, B. Corbett, J. G. McInerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41, 416–418 (2005).
[CrossRef]

J. Muszalski, J. Houlihan, Huyet G., and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310nm,” Electron. Lett. 40, 428–430 (2004).
[CrossRef]

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005).
[CrossRef]

Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold,” Electron. Lett. 28, 9–11 (1992).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10Gbit/s data modulation using 1.3μm InGaAs quantum dot lasers,” Electron. Lett. 41, 244–245 (2005).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot lasers,” IEEE J. Quantum Electron. 40, 1423–1429 (2004).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 1527–1529 (1999).
[CrossRef]

H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray, and L. F. Lester, “Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 16, 2206–2208 (2004).
[CrossRef]

J. Appl. Phys. (1)

J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94, 1983–1989 (2003).
[CrossRef]

Phys. Rev. B (1)

H. C. Schneider, W. W. Chow, and S. W. Koch, “Anomalous carrier-induced dispersion in quantum-dot active media,” Phys. Rev. B 66, 041310 (2002).
[CrossRef]

Other (3)

H. C. Wong, G. B. Ren, and J. M. Rorison. ”Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quant. Electron. (to be published).

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chich-ester, 1999).

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Values of the α-factor calculated by the following techniques: solid line is the ASE method, dashed line is the FM/AM method, dotted line is the linewidth method. (a) Laser operates for non-saturated dots (ρth = 0.6). (b) Laser operates close to full inversion (ρth = 0.9). For the non-saturated operating point (a) the α-factor does not show strong dependence on the injection current. This is not the case for operation close to full inversion (b).

Fig. 2.
Fig. 2.

(a) FM/AM response under small signal current modulation as defined by Eq. (6). The minimum of this function corresponds to αFM /AM as defined in Eq. (7). Dotted line is the value of α calculated just below threshold by the ASE method. Solid line is the FM/AM response just above threshold. Dashed line is the FM/AM response at twice threshold. Here ρth = 0.6. (b) Linewidth due to αlw . Solid line is for non-zero values of αd and αnr . Dashed line is for αnr = 0. Here the current ranges from threshold to 8 times threshold and αth = 0.75.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α = 4 π λ dn dN dg dN ,
N ˙ = γ n N + J q 2 CN ( 1 ρ ) ,
ρ ˙ = γ n N + CN ( 1 ρ ) v g σ ( 2 ρ 1 ) E 2 ,
E ˙ = 1 2 γ s E + 1 2 v g g 0 ( 2 ρ 1 ) ( 1 + i α d ) E + i α nr v g g 0 NE ,
α = α d + α nr δN δρ .
F ( ω ) = 2 S dc δφ δS .
α FM AM F ( ω min ) = α d + α nr γ d C ( 1 ρ th ) 2 ρ th 1 + ρ th J dc J th 2 ρ th 1
α lw = α d + α nr 2 C N ss γ n + 2 C ( 1 ρ ss ) .

Metrics