Abstract

We investigate the influence of the core d-electrons on the spectral optical response of arrays of sub-wavelength holes near the transition from the d-band to the Fermi level of noble metals (d→EF). Our model shows that, due to the dispersion of the metal dielectric function near d→EF, the first order peaks in the enhanced spectral transmission shift nonlinearly as a function of the period of the nanostructure. In addition, we outline in that spectral region an apparent large resonance which does not depend on the geometrical parameters of the nanostructure. It is shown to correspond to the transparency window resulting from the spectral superposition of the large absorption associated to the core d-electrons and high reflectivity due to the conduction electrons. The analysis is performed for gold, copper and silver nanostructures.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
    [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  3. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  4. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
    [CrossRef] [PubMed]
  5. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  6. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett 84, 4661-4663 (2002).
    [CrossRef]
  7. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength hole," Phys. Rev. B 68, 201306 (2003).
    [CrossRef]
  8. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  9. H. Cao, and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1004.
    [CrossRef] [PubMed]
  10. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef]
  11. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold Films," Nano Lett. 4, 1003 (2004).
    [CrossRef]
  12. I. Avrutsky, Y. Zhao, and V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595 (2000).
    [CrossRef]
  13. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81,4327 (2002).
    [CrossRef]
  14. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500 (2004).
    [CrossRef] [PubMed]
  15. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  16. J.-Y. Bigot, J.-C. Merle, O. Crégut, and A. Daunois, "Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses," Phys. Rev. Lett. 75, 4702 (1995).
    [CrossRef] [PubMed]
  17. P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
    [CrossRef]
  18. J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
    [CrossRef]
  19. V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, "Electron Dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles," Phys. Rev. B 60, 11738 (1999).
    [CrossRef]
  20. H. Petek, H. Nagano, and S. Ogawa, "Hot-electron dynamics in copper revisited: The d-band effect," Appl. Phys. B: Lasers Opt. 68, 369 (1999).
    [CrossRef]
  21. N. del Fatti, C. Flytzanis, and F. Vallée, "Ultrafast induced electron-surface scattering in a confined metallic system," Appl. Phys. B: Lasers Opt. 68, 433 (1999).
    [CrossRef]
  22. F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genêt and T. W. Ebbesen, "Optical transmission in perforated noble and transition metal films," submitted to J. Opt. A.
  23. J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-fys.Medd. 28, 8 (1954).
  24. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun 200, 1-7 (2001).
    [CrossRef]
  25. A.  Benabbas, V.  Halté, and J.-Y.  Bigot, "Analytical model of the optical response of periodically structured metallic films," Opt. Express  13, 8730-8745(2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8730.
    [CrossRef] [PubMed]
  26. S. A. Damanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003);
    [CrossRef]
  27. S. A. Damanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
    [CrossRef]
  28. A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, "Resonant transmittance through metal films with fabricated and light-induced modulation," Phys. Rev. B 67, 195402 (2003).
    [CrossRef]
  29. A. V. Kats, and A. Yu. Nikitin, "Nonzeroth-Order anomalous optical transparency in modulated metal films owing to excitation of surface plasmon polaritons: an analytic approach," JETP Lett. 79, 625 (2004).
    [CrossRef]
  30. A. V. Kats and A. Yu. Nikitin, "Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation," Phys. Rev. B 70, 235412 (2004).
    [CrossRef]
  31. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
    [CrossRef]
  32. D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik, ed. (Academic Press, New York, 1991).
  33. H. Ehrenreich, and M. H. Cohen, "Self-consistent field approach to the many-electron problem," Phys. Rev. 115, 786 (1959).
    [CrossRef]
  34. R. Rosei, F. Antonangeli, and U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Science 37, 689 (1973).
    [CrossRef]
  35. B. R. Cooper, H. Ehrenreich, and H. R. Philipp, "Optical properties of noble metals. II," Phys. Rev. 138, A494 (1965).
    [CrossRef]
  36. N. E. Christensen, "The band structure of silver and optical interband transitions," Phys. Stat. Sol. B 54, 551 (1972).
    [CrossRef]
  37. R. Rosei, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Theory," Phys. Rev. B 10, 474 (1974).
    [CrossRef]
  38. R. Rosei, C. H. Culp, and J. H. Weaver, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental," Phys. Rev. B 10, 484 (1974).
    [CrossRef]

2005 (1)

A.  Benabbas, V.  Halté, and J.-Y.  Bigot, "Analytical model of the optical response of periodically structured metallic films," Opt. Express  13, 8730-8745(2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8730.
[CrossRef] [PubMed]

2004 (8)

S. A. Damanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

A. V. Kats, and A. Yu. Nikitin, "Nonzeroth-Order anomalous optical transparency in modulated metal films owing to excitation of surface plasmon polaritons: an analytic approach," JETP Lett. 79, 625 (2004).
[CrossRef]

A. V. Kats and A. Yu. Nikitin, "Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation," Phys. Rev. B 70, 235412 (2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

H. Cao, and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1004.
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold Films," Nano Lett. 4, 1003 (2004).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500 (2004).
[CrossRef] [PubMed]

2003 (3)

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength hole," Phys. Rev. B 68, 201306 (2003).
[CrossRef]

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, "Resonant transmittance through metal films with fabricated and light-induced modulation," Phys. Rev. B 67, 195402 (2003).
[CrossRef]

S. A. Damanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003);
[CrossRef]

2002 (2)

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81,4327 (2002).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett 84, 4661-4663 (2002).
[CrossRef]

2001 (2)

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

2000 (2)

I. Avrutsky, Y. Zhao, and V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595 (2000).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

1999 (4)

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, "Electron Dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles," Phys. Rev. B 60, 11738 (1999).
[CrossRef]

H. Petek, H. Nagano, and S. Ogawa, "Hot-electron dynamics in copper revisited: The d-band effect," Appl. Phys. B: Lasers Opt. 68, 369 (1999).
[CrossRef]

N. del Fatti, C. Flytzanis, and F. Vallée, "Ultrafast induced electron-surface scattering in a confined metallic system," Appl. Phys. B: Lasers Opt. 68, 433 (1999).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

1998 (3)

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

1997 (1)

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

1995 (1)

J.-Y. Bigot, J.-C. Merle, O. Crégut, and A. Daunois, "Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses," Phys. Rev. Lett. 75, 4702 (1995).
[CrossRef] [PubMed]

1974 (2)

R. Rosei, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Theory," Phys. Rev. B 10, 474 (1974).
[CrossRef]

R. Rosei, C. H. Culp, and J. H. Weaver, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental," Phys. Rev. B 10, 484 (1974).
[CrossRef]

1973 (1)

R. Rosei, F. Antonangeli, and U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Science 37, 689 (1973).
[CrossRef]

1972 (1)

N. E. Christensen, "The band structure of silver and optical interband transitions," Phys. Stat. Sol. B 54, 551 (1972).
[CrossRef]

1965 (1)

B. R. Cooper, H. Ehrenreich, and H. R. Philipp, "Optical properties of noble metals. II," Phys. Rev. 138, A494 (1965).
[CrossRef]

1959 (1)

H. Ehrenreich, and M. H. Cohen, "Self-consistent field approach to the many-electron problem," Phys. Rev. 115, 786 (1959).
[CrossRef]

1954 (1)

J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-fys.Medd. 28, 8 (1954).

Antonangeli, F.

R. Rosei, F. Antonangeli, and U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Science 37, 689 (1973).
[CrossRef]

Avrutsky, I.

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81,4327 (2002).
[CrossRef]

Becker, U.

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Benabbas, A.

A.  Benabbas, V.  Halté, and J.-Y.  Bigot, "Analytical model of the optical response of periodically structured metallic films," Opt. Express  13, 8730-8745(2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8730.
[CrossRef] [PubMed]

Beruete, M.

Bigot, J.-Y.

A.  Benabbas, V.  Halté, and J.-Y.  Bigot, "Analytical model of the optical response of periodically structured metallic films," Opt. Express  13, 8730-8745(2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8730.
[CrossRef] [PubMed]

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, "Electron Dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles," Phys. Rev. B 60, 11738 (1999).
[CrossRef]

J.-Y. Bigot, J.-C. Merle, O. Crégut, and A. Daunois, "Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses," Phys. Rev. Lett. 75, 4702 (1995).
[CrossRef] [PubMed]

Bost, P.

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Bravo-Abad, J.

Broyer, M.

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

Campillo, I.

Cao, H.

Christensen, N. E.

N. E. Christensen, "The band structure of silver and optical interband transitions," Phys. Stat. Sol. B 54, 551 (1972).
[CrossRef]

Cohen, M. H.

H. Ehrenreich, and M. H. Cohen, "Self-consistent field approach to the many-electron problem," Phys. Rev. 115, 786 (1959).
[CrossRef]

Cooper, B. R.

B. R. Cooper, H. Ehrenreich, and H. R. Philipp, "Optical properties of noble metals. II," Phys. Rev. 138, A494 (1965).
[CrossRef]

Cottancin, E.

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

Crégut, O.

J.-Y. Bigot, J.-C. Merle, O. Crégut, and A. Daunois, "Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses," Phys. Rev. Lett. 75, 4702 (1995).
[CrossRef] [PubMed]

Culp, C. H.

R. Rosei, C. H. Culp, and J. H. Weaver, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental," Phys. Rev. B 10, 484 (1974).
[CrossRef]

Damanyan, S. A.

S. A. Damanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

S. A. Damanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003);
[CrossRef]

Daunois, A.

J.-Y. Bigot, J.-C. Merle, O. Crégut, and A. Daunois, "Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses," Phys. Rev. Lett. 75, 4702 (1995).
[CrossRef] [PubMed]

de Fornel, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81,4327 (2002).
[CrossRef]

del Fatti, N.

N. del Fatti, C. Flytzanis, and F. Vallée, "Ultrafast induced electron-surface scattering in a confined metallic system," Appl. Phys. B: Lasers Opt. 68, 433 (1999).
[CrossRef]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dolado, J. S.

Dykhne, A. M.

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, "Resonant transmittance through metal films with fabricated and light-induced modulation," Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81,4327 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Ehrenreich, H.

B. R. Cooper, H. Ehrenreich, and H. R. Philipp, "Optical properties of noble metals. II," Phys. Rev. 138, A494 (1965).
[CrossRef]

H. Ehrenreich, and M. H. Cohen, "Self-consistent field approach to the many-electron problem," Phys. Rev. 115, 786 (1959).
[CrossRef]

Enoch, S.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Feldmann, J.

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Flytzanis, C.

N. del Fatti, C. Flytzanis, and F. Vallée, "Ultrafast induced electron-surface scattering in a confined metallic system," Appl. Phys. B: Lasers Opt. 68, 433 (1999).
[CrossRef]

Garcia-Vidal, F. J.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Grassano, U. M.

R. Rosei, F. Antonangeli, and U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Science 37, 689 (1973).
[CrossRef]

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Guille, J.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, "Electron Dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles," Phys. Rev. B 60, 11738 (1999).
[CrossRef]

Halté, V.

A.  Benabbas, V.  Halté, and J.-Y.  Bigot, "Analytical model of the optical response of periodically structured metallic films," Opt. Express  13, 8730-8745(2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8730.
[CrossRef] [PubMed]

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, "Electron Dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles," Phys. Rev. B 60, 11738 (1999).
[CrossRef]

Hanarp, P.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold Films," Nano Lett. 4, 1003 (2004).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett 84, 4661-4663 (2002).
[CrossRef]

Käll, M.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold Films," Nano Lett. 4, 1003 (2004).
[CrossRef]

Kats, A. V.

A. V. Kats and A. Yu. Nikitin, "Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation," Phys. Rev. B 70, 235412 (2004).
[CrossRef]

A. V. Kats, and A. Yu. Nikitin, "Nonzeroth-Order anomalous optical transparency in modulated metal films owing to excitation of surface plasmon polaritons: an analytic approach," JETP Lett. 79, 625 (2004).
[CrossRef]

Klein Koerkamp, K. J.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Kochergin, V.

Kuipers, L.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett 84, 4661-4663 (2002).
[CrossRef]

Lemmer, U.

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Lermé, J.

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

Lezec, H. J.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81,4327 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Lindhard, J.

J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-fys.Medd. 28, 8 (1954).

Martin-Moreno, L.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Menning, M.

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Merle, J.-C.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, "Electron Dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles," Phys. Rev. B 60, 11738 (1999).
[CrossRef]

J.-Y. Bigot, J.-C. Merle, O. Crégut, and A. Daunois, "Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses," Phys. Rev. Lett. 75, 4702 (1995).
[CrossRef] [PubMed]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Nagano, H.

H. Petek, H. Nagano, and S. Ogawa, "Hot-electron dynamics in copper revisited: The d-band effect," Appl. Phys. B: Lasers Opt. 68, 369 (1999).
[CrossRef]

Nahata, A.

Nevière, M.

S. A. Damanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Nikitin, A. Yu.

A. V. Kats and A. Yu. Nikitin, "Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation," Phys. Rev. B 70, 235412 (2004).
[CrossRef]

A. V. Kats, and A. Yu. Nikitin, "Nonzeroth-Order anomalous optical transparency in modulated metal films owing to excitation of surface plasmon polaritons: an analytic approach," JETP Lett. 79, 625 (2004).
[CrossRef]

Ogawa, S.

H. Petek, H. Nagano, and S. Ogawa, "Hot-electron dynamics in copper revisited: The d-band effect," Appl. Phys. B: Lasers Opt. 68, 369 (1999).
[CrossRef]

Olofsson, L.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold Films," Nano Lett. 4, 1003 (2004).
[CrossRef]

Palpant, B.

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

Pellarin, M.

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Perakis, I.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, "Electron Dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles," Phys. Rev. B 60, 11738 (1999).
[CrossRef]

Perez, A.

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

Perner, P.

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Petek, H.

H. Petek, H. Nagano, and S. Ogawa, "Hot-electron dynamics in copper revisited: The d-band effect," Appl. Phys. B: Lasers Opt. 68, 369 (1999).
[CrossRef]

Philipp, H. R.

B. R. Cooper, H. Ehrenreich, and H. R. Philipp, "Optical properties of noble metals. II," Phys. Rev. 138, A494 (1965).
[CrossRef]

Popov, E.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Prével, B.

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

Prikulis, J.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold Films," Nano Lett. 4, 1003 (2004).
[CrossRef]

Reinisch, R.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

Rosei, R.

R. Rosei, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Theory," Phys. Rev. B 10, 474 (1974).
[CrossRef]

R. Rosei, C. H. Culp, and J. H. Weaver, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental," Phys. Rev. B 10, 484 (1974).
[CrossRef]

R. Rosei, F. Antonangeli, and U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Science 37, 689 (1973).
[CrossRef]

Salomon, L.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett 84, 4661-4663 (2002).
[CrossRef]

Sarychev, A. K.

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, "Resonant transmittance through metal films with fabricated and light-induced modulation," Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Schmidt, H.

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Schmitt, M.

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Segerink, F. B.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Shalaev, V. M.

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, "Resonant transmittance through metal films with fabricated and light-induced modulation," Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Sorolla, M.

Sutherland, D.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold Films," Nano Lett. 4, 1003 (2004).
[CrossRef]

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Treilleux, M.

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

Vallée, F.

N. del Fatti, C. Flytzanis, and F. Vallée, "Ultrafast induced electron-surface scattering in a confined metallic system," Appl. Phys. B: Lasers Opt. 68, 433 (1999).
[CrossRef]

van Hulst, N. F.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Vialle, J. L.

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

von Plessen, G.

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Weaver, J. H.

R. Rosei, C. H. Culp, and J. H. Weaver, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental," Phys. Rev. B 10, 484 (1974).
[CrossRef]

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Zayats, A. V.

S. A. Damanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

S. A. Damanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003);
[CrossRef]

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Zhao, Y.

Appl. Phys. B: Lasers Opt. (2)

H. Petek, H. Nagano, and S. Ogawa, "Hot-electron dynamics in copper revisited: The d-band effect," Appl. Phys. B: Lasers Opt. 68, 369 (1999).
[CrossRef]

N. del Fatti, C. Flytzanis, and F. Vallée, "Ultrafast induced electron-surface scattering in a confined metallic system," Appl. Phys. B: Lasers Opt. 68, 433 (1999).
[CrossRef]

Appl. Phys. Lett (1)

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett 84, 4661-4663 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81,4327 (2002).
[CrossRef]

Eur. Phys. J. D. (1)

J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998).
[CrossRef]

JETP Lett. (1)

A. V. Kats, and A. Yu. Nikitin, "Nonzeroth-Order anomalous optical transparency in modulated metal films owing to excitation of surface plasmon polaritons: an analytic approach," JETP Lett. 79, 625 (2004).
[CrossRef]

Medd. (1)

J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-fys.Medd. 28, 8 (1954).

Nano Lett. (1)

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold Films," Nano Lett. 4, 1003 (2004).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Express (1)

A.  Benabbas, V.  Halté, and J.-Y.  Bigot, "Analytical model of the optical response of periodically structured metallic films," Opt. Express  13, 8730-8745(2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8730.
[CrossRef] [PubMed]

Phys. Rev. (2)

H. Ehrenreich, and M. H. Cohen, "Self-consistent field approach to the many-electron problem," Phys. Rev. 115, 786 (1959).
[CrossRef]

B. R. Cooper, H. Ehrenreich, and H. R. Philipp, "Optical properties of noble metals. II," Phys. Rev. 138, A494 (1965).
[CrossRef]

Phys. Rev. B (10)

A. V. Kats and A. Yu. Nikitin, "Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation," Phys. Rev. B 70, 235412 (2004).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[CrossRef]

S. A. Damanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003);
[CrossRef]

S. A. Damanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, "Resonant transmittance through metal films with fabricated and light-induced modulation," Phys. Rev. B 67, 195402 (2003).
[CrossRef]

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, "Electron Dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles," Phys. Rev. B 60, 11738 (1999).
[CrossRef]

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength hole," Phys. Rev. B 68, 201306 (2003).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

R. Rosei, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Theory," Phys. Rev. B 10, 474 (1974).
[CrossRef]

R. Rosei, C. H. Culp, and J. H. Weaver, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental," Phys. Rev. B 10, 484 (1974).
[CrossRef]

Phys. Rev. Lett. (7)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

J.-Y. Bigot, J.-C. Merle, O. Crégut, and A. Daunois, "Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses," Phys. Rev. Lett. 75, 4702 (1995).
[CrossRef] [PubMed]

P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[CrossRef]

Phys. Stat. Sol. B (1)

N. E. Christensen, "The band structure of silver and optical interband transitions," Phys. Stat. Sol. B 54, 551 (1972).
[CrossRef]

Surf. Science (1)

R. Rosei, F. Antonangeli, and U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Science 37, 689 (1973).
[CrossRef]

Other (4)

D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik, ed. (Academic Press, New York, 1991).

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun 200, 1-7 (2001).
[CrossRef]

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genêt and T. W. Ebbesen, "Optical transmission in perforated noble and transition metal films," submitted to J. Opt. A.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Linear transmission spectra normalized to unity, of nanostructures with different periods a designed in a 250 nm thick gold film evaporated on an Al2O3 substrate.

Fig. 2.
Fig. 2.

Spectral dielectric function of gold: tabulated values [30] (green circles) ε exp, determined experimentally on a 29 nm gold film (black lines) and ε theo calculated with the Lindhard formalism (red triangles). The closed symbols or solid line display the real part of these dielectric functions while the open ones or dashed line represent their corresponding imaginary parts.

Fig. 3.
Fig. 3.

(a) Experimental linear transmission of a gold nanostructure with the following parameters: a = 300 nm, d = 177 nm, h = 250 nm, Al2O3 substrate. (b) Calculated zero order transmission spectra using the Lindhard dielectric function εtheo and the experimental one εexp.

Fig. 4.
Fig. 4.

(a) Spectral positions of the maxima in transmission (closed symbols) and absorption (open symbols) as a function of the period of the array of gold nanostructures, with a constant filling factor f = 0.26, a thickness h = 110 nm and ε III = 3.1. The red symbols correspond to the (1, 0)SS order peak. The blue symbols represent the transparency window and the green ones display the positions of the (1, 0)AS order peak. Inset: detailed view of the splitting of the resonance at ~510 nm. (b) Transmission spectra of the preceding nanostructures for different periods a. A vertical offset has been added for clarity. The metal dielectric function is ε theo.

Fig. 5.
Fig. 5.

(a) Spectral positions of the maxima of transmission as a function of the period. The structures parameters are the same as in Fig. 4 but the dielectric function of gold does not include the interband transitions. (b). Corresponding transmission spectra for different periods. (c). Spectral positions of the (1, 0)SS peak determined by the surface plasmon dispersion relation given in the text (red circles), calculated with our model, using ε theo (green line) and the real part of the Drude-like dielectric function (blue line).

Fig. 6.
Fig. 6.

Linear zero order transmission spectra of gold nanostructures with a = 300 nm, d = 180 nm, h = 110 nm, εIII = 3.1 for different dielectric functions εI .

Fig. 7.
Fig. 7.

(a) Real (closed symbols) and imaginary parts (open symbols) of the dielectric function of copper calculated in the self-consistent field method (red triangles), or tabulated [30] (green circles). (b) Calculated transmission spectra with ε theo and ε tab of a copper nanostructure with a = 350 nm, d = 200 nm, h = 110 nm ε III = 2.25. (c) Spectral positions as a function of the period of the (1, 0)SS peak (red), (1, 0)AS peak (green), and the transparency window (blue).

Fig. 8.
Fig. 8.

(a) Real (closed symbols) and imaginary parts (open symbols) of the dielectric function of silver calculated in the self-consistent field method (red triangles), or tabulated [30] (green circles). (b) Calculated transmission spectra with etheo and etab of a silverr nanostructure with a = 400 nm, f = 0.26, h = 110 nm ε III = 2.25. Inset: detailed view in the spectral region of the transparency windows. (c) Spectral positions as a function of the period of the (1, 0)SS peak (red), (1, 0)AS peak (green), and the transparency window associated to the absorption due to p→s transition (black) and due to d→EF transition (blue).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε II ( x ) = n ε n exp ( ingx )
{ ε 0 = f ε h + ( 1 f ) ε m , for n = 0 ε 0 = ( ε h ε m ) sin ( nπf ) πn for n 0
R n = r n r n * Re ( k l z n k 0 ε I cos θ ) T n = t n t n * Re ( ε I k III z n k 0 ε III cos θ )
ε Drude ( ω ) = 1 4 πN e 2 ħ 2 m 1 ħω ( ħω + i γ f ) = 1 ( ħ ω p ) 2 ħω ( ħω + i γ f )
ε inter ( ω ) = e 2 ħ 2 m 2 π 2 l , l ' l l ' d 3 k P ll ' 2 ( ħ ω l ' l ) 2 [ f o ( E kl ) f o ( E kl ' ) ] ħ ω l ' l ħω + γ ee

Metrics