Abstract

We developed a method of composite domain control (CDC) for plasmon resonance as an application of multilayered domain control (MLDC). A distinctive characteristic of CDC is the utilization of dielectric and metal particles. Its structure is similar to that fabricated by the sol-gel method. It is considerably thinner than that prepared by MLDC. In addition, it is possible to conveniently and exactly adjust the plasmon resonance utilizing CDC because it combines the characteristics of MLDC. Accordingly, CDC is a conventional method that is more effective than MLDC. Moreover, CDC is suitable in manufacturing with regard to stress reduction, miniaturization, and cost of the products.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Fuchs and K. L. Kliewer, "Optical modes of vibration in. an ionic crystal sphere," J. Opt. Soc. Am. 58, 319-330 (1968).
    [CrossRef]
  2. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
    [CrossRef]
  3. H. Dohi, Y. Kuwamura, M. Fukui, and O. Tada, "Long-range surface plasmon polaritons in metal film bounded by similar-refractive-index materials," J. Phys. Soc. Jpn. 53, 2828-2832 (1984).
    [CrossRef]
  4. Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
    [CrossRef]
  5. M. Fukui and K. Oda, "Studies on metal film growth through instantaneously observed attenuated total reflection spectra," Appl. Surf. Sci. 33-34, 882-889 (1988).
    [CrossRef]
  6. J. S. Yuk, S. Yi, J. Han, Y. Kim, and K. Ha, "Surface plasmon resonance intensity in ex situ analysis of protein arrays using a wavelength interrogation-based surface plasmon resonance sensor," Jpn. J. Appl. Phys. 43, 2756-2760 (2004).
    [CrossRef]
  7. U. C.  Fischer and J.  Heimel, "Elastic scattering by a metal sphere with adsorbed molecule as a model for the detection of single molecules by scanning probe enhanced elastic resonant scattering (SPEERS)," Jpn. J. Appl. Phys. 40, 4391-4394 (2001).
    [CrossRef]
  8. M. Futamata and A. Bruckbauer, "Attenuated total reflection-scanning near-field Raman spectroscopy," Jpn. J. Appl. Phys. 40, 4423-4429 (2001).
    [CrossRef]
  9. J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
    [CrossRef]
  10. J. Kim, K. Song and K. Park, "Near-field optical readout combined with atomic force probe recording," Jpn. J. Appl. Phys. 41, 1903-1904 (2002).
    [CrossRef]
  11. K. P. Chiu, W. C. Lin, Y. H. Fu, and D. P. Tsai, "Calculation of surface plasmon effect on optical discs," Jpn. J. Appl. Phys. 43, 4730-4735 (2004).
    [CrossRef]
  12. T. Okamoto, M. Haraguchi, and M. Fukui, "Light intensity enhancement and optical nonlinear response due to localized surface plasmons in nanosize Ag sphere," Jpn. J. Appl. Phys. 43, 6507-6512 (2004).
    [CrossRef]
  13. T. Chen, W. Su and Y. Lin, "A surface plasmon resonance study of Ag nanoparticles in an aqueous solution," Jpn. J. Appl. Phys. 43, L119-L122 (2004).
    [CrossRef]
  14. H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon," Appl. Phys. Lett. 85, 1317-1319 (2004).
    [CrossRef]
  15. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, "Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations," Appl. Phys. Lett. 84, 4938-4940 (2004).
    [CrossRef]
  16. T. Saito, M. Haraguchi, and M. Fukui, "Multilayered domain control for plasmon resonance," Jpn. J. Appl. Phys. 44, L1234-L1236 (2005).
    [CrossRef]
  17. M. Fukui and M. Ohtsu, Hikari nano technology no kiso (Ohmsha, Tokyo, 2003), Chap. 3.
  18. T. Saiki and Y. Toda, Nano scale no hikari bussei (Ohmsha, Tokyo, 2004), Chap. 4.
  19. I. V. Kityk, A. Ali Umar, M. Oyama, "Circularly polarized light-induced electrogyration in the Au nanoparticles on the ITO," Physica E 27, 420-426 (2005).
    [CrossRef]
  20. I.V. Kityk, Ebothe´, K. Ozga, K.J. Plucinski, G. Chang, Kobayashi, M. Oyama, "Non-linear optical properties of the Ag nanoparticles on the ITO," Physica E 31, 38-42 (2006).
    [CrossRef]
  21. S. Hayashi and T. Konishi, "Scanning near-field optical microscopic observation of surface-enhanced raman scattering mediated by metallic particle-surface gap modes," Jpn. J. of Appl. Phys. 44,.5313-5318 (2005)
    [CrossRef]

2006

I.V. Kityk, Ebothe´, K. Ozga, K.J. Plucinski, G. Chang, Kobayashi, M. Oyama, "Non-linear optical properties of the Ag nanoparticles on the ITO," Physica E 31, 38-42 (2006).
[CrossRef]

I.V. Kityk, Ebothe´, K. Ozga, K.J. Plucinski, G. Chang, Kobayashi, M. Oyama, "Non-linear optical properties of the Ag nanoparticles on the ITO," Physica E 31, 38-42 (2006).
[CrossRef]

2005

T. Saito, M. Haraguchi, and M. Fukui, "Multilayered domain control for plasmon resonance," Jpn. J. Appl. Phys. 44, L1234-L1236 (2005).
[CrossRef]

I. V. Kityk, A. Ali Umar, M. Oyama, "Circularly polarized light-induced electrogyration in the Au nanoparticles on the ITO," Physica E 27, 420-426 (2005).
[CrossRef]

2004

K. P. Chiu, W. C. Lin, Y. H. Fu, and D. P. Tsai, "Calculation of surface plasmon effect on optical discs," Jpn. J. Appl. Phys. 43, 4730-4735 (2004).
[CrossRef]

T. Okamoto, M. Haraguchi, and M. Fukui, "Light intensity enhancement and optical nonlinear response due to localized surface plasmons in nanosize Ag sphere," Jpn. J. Appl. Phys. 43, 6507-6512 (2004).
[CrossRef]

T. Chen, W. Su and Y. Lin, "A surface plasmon resonance study of Ag nanoparticles in an aqueous solution," Jpn. J. Appl. Phys. 43, L119-L122 (2004).
[CrossRef]

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon," Appl. Phys. Lett. 85, 1317-1319 (2004).
[CrossRef]

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, "Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations," Appl. Phys. Lett. 84, 4938-4940 (2004).
[CrossRef]

J. S. Yuk, S. Yi, J. Han, Y. Kim, and K. Ha, "Surface plasmon resonance intensity in ex situ analysis of protein arrays using a wavelength interrogation-based surface plasmon resonance sensor," Jpn. J. Appl. Phys. 43, 2756-2760 (2004).
[CrossRef]

2002

J. Kim, K. Song and K. Park, "Near-field optical readout combined with atomic force probe recording," Jpn. J. Appl. Phys. 41, 1903-1904 (2002).
[CrossRef]

2001

U. C.  Fischer and J.  Heimel, "Elastic scattering by a metal sphere with adsorbed molecule as a model for the detection of single molecules by scanning probe enhanced elastic resonant scattering (SPEERS)," Jpn. J. Appl. Phys. 40, 4391-4394 (2001).
[CrossRef]

M. Futamata and A. Bruckbauer, "Attenuated total reflection-scanning near-field Raman spectroscopy," Jpn. J. Appl. Phys. 40, 4423-4429 (2001).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

1988

M. Fukui and K. Oda, "Studies on metal film growth through instantaneously observed attenuated total reflection spectra," Appl. Surf. Sci. 33-34, 882-889 (1988).
[CrossRef]

1984

H. Dohi, Y. Kuwamura, M. Fukui, and O. Tada, "Long-range surface plasmon polaritons in metal film bounded by similar-refractive-index materials," J. Phys. Soc. Jpn. 53, 2828-2832 (1984).
[CrossRef]

1983

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

1981

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

1968

Ali Umar, A.

I. V. Kityk, A. Ali Umar, M. Oyama, "Circularly polarized light-induced electrogyration in the Au nanoparticles on the ITO," Physica E 27, 420-426 (2005).
[CrossRef]

Atoda, N.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Barber, P. W.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Bruckbauer, A.

M. Futamata and A. Bruckbauer, "Attenuated total reflection-scanning near-field Raman spectroscopy," Jpn. J. Appl. Phys. 40, 4423-4429 (2001).
[CrossRef]

Büchel, D.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Chang, R. K.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Chen, T.

T. Chen, W. Su and Y. Lin, "A surface plasmon resonance study of Ag nanoparticles in an aqueous solution," Jpn. J. Appl. Phys. 43, L119-L122 (2004).
[CrossRef]

Chiu, K. P.

K. P. Chiu, W. C. Lin, Y. H. Fu, and D. P. Tsai, "Calculation of surface plasmon effect on optical discs," Jpn. J. Appl. Phys. 43, 4730-4735 (2004).
[CrossRef]

Dohi, H.

H. Dohi, Y. Kuwamura, M. Fukui, and O. Tada, "Long-range surface plasmon polaritons in metal film bounded by similar-refractive-index materials," J. Phys. Soc. Jpn. 53, 2828-2832 (1984).
[CrossRef]

Ebothe´, I.V.

I.V. Kityk, Ebothe´, K. Ozga, K.J. Plucinski, G. Chang, Kobayashi, M. Oyama, "Non-linear optical properties of the Ag nanoparticles on the ITO," Physica E 31, 38-42 (2006).
[CrossRef]

Fischer, U. C.

U. C.  Fischer and J.  Heimel, "Elastic scattering by a metal sphere with adsorbed molecule as a model for the detection of single molecules by scanning probe enhanced elastic resonant scattering (SPEERS)," Jpn. J. Appl. Phys. 40, 4391-4394 (2001).
[CrossRef]

Fu, Y. H.

K. P. Chiu, W. C. Lin, Y. H. Fu, and D. P. Tsai, "Calculation of surface plasmon effect on optical discs," Jpn. J. Appl. Phys. 43, 4730-4735 (2004).
[CrossRef]

Fuchs, R.

Fuji, H.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Fukaya, T.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Fukuda, H.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Fukui, M.

T. Saito, M. Haraguchi, and M. Fukui, "Multilayered domain control for plasmon resonance," Jpn. J. Appl. Phys. 44, L1234-L1236 (2005).
[CrossRef]

T. Okamoto, M. Haraguchi, and M. Fukui, "Light intensity enhancement and optical nonlinear response due to localized surface plasmons in nanosize Ag sphere," Jpn. J. Appl. Phys. 43, 6507-6512 (2004).
[CrossRef]

M. Fukui and K. Oda, "Studies on metal film growth through instantaneously observed attenuated total reflection spectra," Appl. Surf. Sci. 33-34, 882-889 (1988).
[CrossRef]

H. Dohi, Y. Kuwamura, M. Fukui, and O. Tada, "Long-range surface plasmon polaritons in metal film bounded by similar-refractive-index materials," J. Phys. Soc. Jpn. 53, 2828-2832 (1984).
[CrossRef]

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

Fukuta, K.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, "Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations," Appl. Phys. Lett. 84, 4938-4940 (2004).
[CrossRef]

Futamata, M.

M. Futamata and A. Bruckbauer, "Attenuated total reflection-scanning near-field Raman spectroscopy," Jpn. J. Appl. Phys. 40, 4423-4429 (2001).
[CrossRef]

Ha, K.

J. S. Yuk, S. Yi, J. Han, Y. Kim, and K. Ha, "Surface plasmon resonance intensity in ex situ analysis of protein arrays using a wavelength interrogation-based surface plasmon resonance sensor," Jpn. J. Appl. Phys. 43, 2756-2760 (2004).
[CrossRef]

Hamanaka, Y.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, "Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations," Appl. Phys. Lett. 84, 4938-4940 (2004).
[CrossRef]

Han, J.

J. S. Yuk, S. Yi, J. Han, Y. Kim, and K. Ha, "Surface plasmon resonance intensity in ex situ analysis of protein arrays using a wavelength interrogation-based surface plasmon resonance sensor," Jpn. J. Appl. Phys. 43, 2756-2760 (2004).
[CrossRef]

Haraguchi, M.

T. Saito, M. Haraguchi, and M. Fukui, "Multilayered domain control for plasmon resonance," Jpn. J. Appl. Phys. 44, L1234-L1236 (2005).
[CrossRef]

T. Okamoto, M. Haraguchi, and M. Fukui, "Light intensity enhancement and optical nonlinear response due to localized surface plasmons in nanosize Ag sphere," Jpn. J. Appl. Phys. 43, 6507-6512 (2004).
[CrossRef]

Heimel, J.

U. C.  Fischer and J.  Heimel, "Elastic scattering by a metal sphere with adsorbed molecule as a model for the detection of single molecules by scanning probe enhanced elastic resonant scattering (SPEERS)," Jpn. J. Appl. Phys. 40, 4391-4394 (2001).
[CrossRef]

Kikukawa, T.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Kim, J.

J. Kim, K. Song and K. Park, "Near-field optical readout combined with atomic force probe recording," Jpn. J. Appl. Phys. 41, 1903-1904 (2002).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Kim, Y.

J. S. Yuk, S. Yi, J. Han, Y. Kim, and K. Ha, "Surface plasmon resonance intensity in ex situ analysis of protein arrays using a wavelength interrogation-based surface plasmon resonance sensor," Jpn. J. Appl. Phys. 43, 2756-2760 (2004).
[CrossRef]

Kityk, I. V.

I. V. Kityk, A. Ali Umar, M. Oyama, "Circularly polarized light-induced electrogyration in the Au nanoparticles on the ITO," Physica E 27, 420-426 (2005).
[CrossRef]

Kityk, I.V.

I.V. Kityk, Ebothe´, K. Ozga, K.J. Plucinski, G. Chang, Kobayashi, M. Oyama, "Non-linear optical properties of the Ag nanoparticles on the ITO," Physica E 31, 38-42 (2006).
[CrossRef]

Kliewer, K. L.

Kumagai, M.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Kuwamura, Y.

H. Dohi, Y. Kuwamura, M. Fukui, and O. Tada, "Long-range surface plasmon polaritons in metal film bounded by similar-refractive-index materials," J. Phys. Soc. Jpn. 53, 2828-2832 (1984).
[CrossRef]

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

Lin, W. C.

K. P. Chiu, W. C. Lin, Y. H. Fu, and D. P. Tsai, "Calculation of surface plasmon effect on optical discs," Jpn. J. Appl. Phys. 43, 4730-4735 (2004).
[CrossRef]

Lin, Y.

T. Chen, W. Su and Y. Lin, "A surface plasmon resonance study of Ag nanoparticles in an aqueous solution," Jpn. J. Appl. Phys. 43, L119-L122 (2004).
[CrossRef]

Liz-Marzán, L. M.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, "Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations," Appl. Phys. Lett. 84, 4938-4940 (2004).
[CrossRef]

Men, L.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Mertens, H.

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon," Appl. Phys. Lett. 85, 1317-1319 (2004).
[CrossRef]

Messinger, B. J.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Mulvaney, P.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, "Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations," Appl. Phys. Lett. 84, 4938-4940 (2004).
[CrossRef]

Nakamura, A.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, "Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations," Appl. Phys. Lett. 84, 4938-4940 (2004).
[CrossRef]

Nakano, T.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Oda, K.

M. Fukui and K. Oda, "Studies on metal film growth through instantaneously observed attenuated total reflection spectra," Appl. Surf. Sci. 33-34, 882-889 (1988).
[CrossRef]

Okamoto, T.

T. Okamoto, M. Haraguchi, and M. Fukui, "Light intensity enhancement and optical nonlinear response due to localized surface plasmons in nanosize Ag sphere," Jpn. J. Appl. Phys. 43, 6507-6512 (2004).
[CrossRef]

Oyama, M.

I. V. Kityk, A. Ali Umar, M. Oyama, "Circularly polarized light-induced electrogyration in the Au nanoparticles on the ITO," Physica E 27, 420-426 (2005).
[CrossRef]

Park, K.

J. Kim, K. Song and K. Park, "Near-field optical readout combined with atomic force probe recording," Jpn. J. Appl. Phys. 41, 1903-1904 (2002).
[CrossRef]

Polman, A.

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon," Appl. Phys. Lett. 85, 1317-1319 (2004).
[CrossRef]

Saito, T.

T. Saito, M. Haraguchi, and M. Fukui, "Multilayered domain control for plasmon resonance," Jpn. J. Appl. Phys. 44, L1234-L1236 (2005).
[CrossRef]

Sato, A.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Song, K.

J. Kim, K. Song and K. Park, "Near-field optical readout combined with atomic force probe recording," Jpn. J. Appl. Phys. 41, 1903-1904 (2002).
[CrossRef]

Su, W.

T. Chen, W. Su and Y. Lin, "A surface plasmon resonance study of Ag nanoparticles in an aqueous solution," Jpn. J. Appl. Phys. 43, L119-L122 (2004).
[CrossRef]

Tachibana, A.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Tada, O.

H. Dohi, Y. Kuwamura, M. Fukui, and O. Tada, "Long-range surface plasmon polaritons in metal film bounded by similar-refractive-index materials," J. Phys. Soc. Jpn. 53, 2828-2832 (1984).
[CrossRef]

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

Tichelaar, F. D.

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon," Appl. Phys. Lett. 85, 1317-1319 (2004).
[CrossRef]

Tominaga, J.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Tsai, D. P.

K. P. Chiu, W. C. Lin, Y. H. Fu, and D. P. Tsai, "Calculation of surface plasmon effect on optical discs," Jpn. J. Appl. Phys. 43, 4730-4735 (2004).
[CrossRef]

Verhoeven, J.

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon," Appl. Phys. Lett. 85, 1317-1319 (2004).
[CrossRef]

von Raben, K. U.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Yamakawa, Y.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

Yi, S.

J. S. Yuk, S. Yi, J. Han, Y. Kim, and K. Ha, "Surface plasmon resonance intensity in ex situ analysis of protein arrays using a wavelength interrogation-based surface plasmon resonance sensor," Jpn. J. Appl. Phys. 43, 2756-2760 (2004).
[CrossRef]

Yuk, J. S.

J. S. Yuk, S. Yi, J. Han, Y. Kim, and K. Ha, "Surface plasmon resonance intensity in ex situ analysis of protein arrays using a wavelength interrogation-based surface plasmon resonance sensor," Jpn. J. Appl. Phys. 43, 2756-2760 (2004).
[CrossRef]

Appl. Phys. Lett.

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon," Appl. Phys. Lett. 85, 1317-1319 (2004).
[CrossRef]

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, "Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations," Appl. Phys. Lett. 84, 4938-4940 (2004).
[CrossRef]

Appl. Surf. Sci.

M. Fukui and K. Oda, "Studies on metal film growth through instantaneously observed attenuated total reflection spectra," Appl. Surf. Sci. 33-34, 882-889 (1988).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Soc. Jpn.

H. Dohi, Y. Kuwamura, M. Fukui, and O. Tada, "Long-range surface plasmon polaritons in metal film bounded by similar-refractive-index materials," J. Phys. Soc. Jpn. 53, 2828-2832 (1984).
[CrossRef]

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

Jpn. J. Appl. Phys.

T. Saito, M. Haraguchi, and M. Fukui, "Multilayered domain control for plasmon resonance," Jpn. J. Appl. Phys. 44, L1234-L1236 (2005).
[CrossRef]

J. S. Yuk, S. Yi, J. Han, Y. Kim, and K. Ha, "Surface plasmon resonance intensity in ex situ analysis of protein arrays using a wavelength interrogation-based surface plasmon resonance sensor," Jpn. J. Appl. Phys. 43, 2756-2760 (2004).
[CrossRef]

U. C.  Fischer and J.  Heimel, "Elastic scattering by a metal sphere with adsorbed molecule as a model for the detection of single molecules by scanning probe enhanced elastic resonant scattering (SPEERS)," Jpn. J. Appl. Phys. 40, 4391-4394 (2001).
[CrossRef]

M. Futamata and A. Bruckbauer, "Attenuated total reflection-scanning near-field Raman spectroscopy," Jpn. J. Appl. Phys. 40, 4423-4429 (2001).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons," Jpn. J. Appl. Phys. 40, 1831-1834 (2001).
[CrossRef]

J. Kim, K. Song and K. Park, "Near-field optical readout combined with atomic force probe recording," Jpn. J. Appl. Phys. 41, 1903-1904 (2002).
[CrossRef]

K. P. Chiu, W. C. Lin, Y. H. Fu, and D. P. Tsai, "Calculation of surface plasmon effect on optical discs," Jpn. J. Appl. Phys. 43, 4730-4735 (2004).
[CrossRef]

T. Okamoto, M. Haraguchi, and M. Fukui, "Light intensity enhancement and optical nonlinear response due to localized surface plasmons in nanosize Ag sphere," Jpn. J. Appl. Phys. 43, 6507-6512 (2004).
[CrossRef]

T. Chen, W. Su and Y. Lin, "A surface plasmon resonance study of Ag nanoparticles in an aqueous solution," Jpn. J. Appl. Phys. 43, L119-L122 (2004).
[CrossRef]

Phys. Rev. B

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Physica E

I. V. Kityk, A. Ali Umar, M. Oyama, "Circularly polarized light-induced electrogyration in the Au nanoparticles on the ITO," Physica E 27, 420-426 (2005).
[CrossRef]

I.V. Kityk, Ebothe´, K. Ozga, K.J. Plucinski, G. Chang, Kobayashi, M. Oyama, "Non-linear optical properties of the Ag nanoparticles on the ITO," Physica E 31, 38-42 (2006).
[CrossRef]

Other

S. Hayashi and T. Konishi, "Scanning near-field optical microscopic observation of surface-enhanced raman scattering mediated by metallic particle-surface gap modes," Jpn. J. of Appl. Phys. 44,.5313-5318 (2005)
[CrossRef]

M. Fukui and M. Ohtsu, Hikari nano technology no kiso (Ohmsha, Tokyo, 2003), Chap. 3.

T. Saiki and Y. Toda, Nano scale no hikari bussei (Ohmsha, Tokyo, 2004), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Design of MLDC. (b) SEM image of Ag particles. They are deposited using DC sputtering and distributed two-dimensionally. (c) TEM image of the cross section (four Ag layers).

Fig. 2.
Fig. 2.

(a) SEM image of Ag particles. The particles with an average diameter of 8 nm are randomly distributed on the thin SiO2 film. On an average, they are allowed a spacing of 6 nm. (b) SEM image of SiO2 particles. The particles with an average diameter of 8 nm are randomly distributed on the particles shown in Fig. 2(a). On an average, they are allowed a spacing of 2 nm. (c) Design of CDC. (d) TEM image of a CDC cross section (five Ag layers).

Fig. 3.
Fig. 3.

(a) Each pattern exhibits surface plasmon resonance and each peak corresponds to the resonance peak. The number of layers is 6, 8, and 10 in the Ag group and 5, 9, and 12 in the Au group. All other factors are equal in each group. Expressions in the legends such as “6L/15 nm/15 s,” imply the following. “6L” means the number of metal particle layers. “15 nm” means the average diameter of the metal particles. “15 s” means the time of deposition of the dielectric particles. The sizes of the dielectric particles are regulated by time because they depend on the sizes of the metal particles. (b)Each pattern exhibits surface plasmon resonance and each peak corresponds to the resonance peak, similar to Fig. 3(a). The particle diameters are 8, 15, and 23 nm in the Ag group and 5, 10, and 15 nm in the Au group. All of them are intensified with five layers. All other factors are equal in each group. Expressions in the graph have a similar form as in Fig. 3(a).

Fig. 4.
Fig. 4.

(a) Electric field of CDC. (b) Electric field of randomly arranged particles.

Metrics