Abstract

In this paper, we present a one-dimensional simplified model for the processes of gaseous discharge and charging on the surfaces of KDP crystal for one-pulse process in Plasma-Electrode Pockels Cell (PEPC). The PEPCs are used as large-aperture optical switch in laser drivers for inertial-confinement fusion. The plasma electrodes of the switch are produced by high discharge current, while a high voltage pulse is applied across a thin KDP crystal plate through the helium discharge plasma. The evolvements of discharge current, charging voltage on KDP crystal and the switch efficiency of PEPC are simulated. The model is very useful for the design of PEPC and prediction the behavior of the optical switch.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Rhodes, B. woods, J. J. DeYoreo, D. Roberts and L. J. Atherton, "Performance of Large-Aperture Optical Switches for High-Energy Inertial-Confinement Fusion Lasers," Appl. Opt. 34, 5312-5325 (1995).
    [CrossRef] [PubMed]
  2. J. Goldhar and M. A. Hensian, "Large-Aperture Electrooptical Switches with Plasma Electrodes," IEEE J. Quantum Electron. l22,1137-1147 (1986).
    [CrossRef]
  3. J. Gardelle and E. Pasini, "A Simple Operation of a Plasma-Electrode Pockel’s cell for the Laser Megajoules," J. Appl. Phys. 91, 2631-2636 (2002).
    [CrossRef]
  4. C. D. Boley and M. A. Rhodes, "Modeling of Plasma Behavior in a Plasma Electrode Pockels Cell," IEEE Plasma Sci. 27, 713-726 (1999).
    [CrossRef]
  5. R. Deloche, P. Monchicourt, M. Cheret and F. Lambert, "High-pressure Helium Afterglow at Room Temperature," Phys. Rev. A 13, 1140 -1176 (1976).
    [CrossRef]
  6. J. J. Shi and M. G. Kong, "Cathode Fall Characteristics in dc Atmospheric Pressure Glow Discharge," J. Appl. Phys. 94, 5504-5513 (2003).
    [CrossRef]
  7. Tran Ngoc An, E. Marode and P. C. Johnson, "Monte Carlo Simulation of Electrons within the Cathode Fall of Glow Discharge," J. Phys. D: Appl. Phys. 10, 2317-2327, (1977).
    [CrossRef]
  8. D. Lee, J. M. Park, S.H. Hong and Y. Kim, "Numerical Simulation on Mode Transition of Atmospheric Dielectric Barrier Discharge in Helium-Oxygen Mixture," IEEE Plasma Sci. 33, 949-957 (2005).
    [CrossRef]
  9. J. P. Boeuf, "A Two-Dimensional model of dc glow discharges," J. Appl. Phys. 63, 1342-1349 (1988).
    [CrossRef]

2005 (1)

D. Lee, J. M. Park, S.H. Hong and Y. Kim, "Numerical Simulation on Mode Transition of Atmospheric Dielectric Barrier Discharge in Helium-Oxygen Mixture," IEEE Plasma Sci. 33, 949-957 (2005).
[CrossRef]

2003 (1)

J. J. Shi and M. G. Kong, "Cathode Fall Characteristics in dc Atmospheric Pressure Glow Discharge," J. Appl. Phys. 94, 5504-5513 (2003).
[CrossRef]

2002 (1)

J. Gardelle and E. Pasini, "A Simple Operation of a Plasma-Electrode Pockel’s cell for the Laser Megajoules," J. Appl. Phys. 91, 2631-2636 (2002).
[CrossRef]

1999 (1)

C. D. Boley and M. A. Rhodes, "Modeling of Plasma Behavior in a Plasma Electrode Pockels Cell," IEEE Plasma Sci. 27, 713-726 (1999).
[CrossRef]

1995 (1)

1988 (1)

J. P. Boeuf, "A Two-Dimensional model of dc glow discharges," J. Appl. Phys. 63, 1342-1349 (1988).
[CrossRef]

1986 (1)

J. Goldhar and M. A. Hensian, "Large-Aperture Electrooptical Switches with Plasma Electrodes," IEEE J. Quantum Electron. l22,1137-1147 (1986).
[CrossRef]

1977 (1)

Tran Ngoc An, E. Marode and P. C. Johnson, "Monte Carlo Simulation of Electrons within the Cathode Fall of Glow Discharge," J. Phys. D: Appl. Phys. 10, 2317-2327, (1977).
[CrossRef]

1976 (1)

R. Deloche, P. Monchicourt, M. Cheret and F. Lambert, "High-pressure Helium Afterglow at Room Temperature," Phys. Rev. A 13, 1140 -1176 (1976).
[CrossRef]

Boeuf, J. P.

J. P. Boeuf, "A Two-Dimensional model of dc glow discharges," J. Appl. Phys. 63, 1342-1349 (1988).
[CrossRef]

Boley, C. D.

C. D. Boley and M. A. Rhodes, "Modeling of Plasma Behavior in a Plasma Electrode Pockels Cell," IEEE Plasma Sci. 27, 713-726 (1999).
[CrossRef]

Cheret, M.

R. Deloche, P. Monchicourt, M. Cheret and F. Lambert, "High-pressure Helium Afterglow at Room Temperature," Phys. Rev. A 13, 1140 -1176 (1976).
[CrossRef]

Deloche, R.

R. Deloche, P. Monchicourt, M. Cheret and F. Lambert, "High-pressure Helium Afterglow at Room Temperature," Phys. Rev. A 13, 1140 -1176 (1976).
[CrossRef]

Gardelle, J.

J. Gardelle and E. Pasini, "A Simple Operation of a Plasma-Electrode Pockel’s cell for the Laser Megajoules," J. Appl. Phys. 91, 2631-2636 (2002).
[CrossRef]

Goldhar, J.

J. Goldhar and M. A. Hensian, "Large-Aperture Electrooptical Switches with Plasma Electrodes," IEEE J. Quantum Electron. l22,1137-1147 (1986).
[CrossRef]

Hensian, M. A.

J. Goldhar and M. A. Hensian, "Large-Aperture Electrooptical Switches with Plasma Electrodes," IEEE J. Quantum Electron. l22,1137-1147 (1986).
[CrossRef]

Hong, S.H.

D. Lee, J. M. Park, S.H. Hong and Y. Kim, "Numerical Simulation on Mode Transition of Atmospheric Dielectric Barrier Discharge in Helium-Oxygen Mixture," IEEE Plasma Sci. 33, 949-957 (2005).
[CrossRef]

Kim, Y.

D. Lee, J. M. Park, S.H. Hong and Y. Kim, "Numerical Simulation on Mode Transition of Atmospheric Dielectric Barrier Discharge in Helium-Oxygen Mixture," IEEE Plasma Sci. 33, 949-957 (2005).
[CrossRef]

Kong, M. G.

J. J. Shi and M. G. Kong, "Cathode Fall Characteristics in dc Atmospheric Pressure Glow Discharge," J. Appl. Phys. 94, 5504-5513 (2003).
[CrossRef]

Lambert, F.

R. Deloche, P. Monchicourt, M. Cheret and F. Lambert, "High-pressure Helium Afterglow at Room Temperature," Phys. Rev. A 13, 1140 -1176 (1976).
[CrossRef]

Lee, D.

D. Lee, J. M. Park, S.H. Hong and Y. Kim, "Numerical Simulation on Mode Transition of Atmospheric Dielectric Barrier Discharge in Helium-Oxygen Mixture," IEEE Plasma Sci. 33, 949-957 (2005).
[CrossRef]

Monchicourt, P.

R. Deloche, P. Monchicourt, M. Cheret and F. Lambert, "High-pressure Helium Afterglow at Room Temperature," Phys. Rev. A 13, 1140 -1176 (1976).
[CrossRef]

Park, J. M.

D. Lee, J. M. Park, S.H. Hong and Y. Kim, "Numerical Simulation on Mode Transition of Atmospheric Dielectric Barrier Discharge in Helium-Oxygen Mixture," IEEE Plasma Sci. 33, 949-957 (2005).
[CrossRef]

Pasini, E.

J. Gardelle and E. Pasini, "A Simple Operation of a Plasma-Electrode Pockel’s cell for the Laser Megajoules," J. Appl. Phys. 91, 2631-2636 (2002).
[CrossRef]

Rhodes, M. A.

Shi, J. J.

J. J. Shi and M. G. Kong, "Cathode Fall Characteristics in dc Atmospheric Pressure Glow Discharge," J. Appl. Phys. 94, 5504-5513 (2003).
[CrossRef]

Tran Ngoc An,

Tran Ngoc An, E. Marode and P. C. Johnson, "Monte Carlo Simulation of Electrons within the Cathode Fall of Glow Discharge," J. Phys. D: Appl. Phys. 10, 2317-2327, (1977).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

J. Goldhar and M. A. Hensian, "Large-Aperture Electrooptical Switches with Plasma Electrodes," IEEE J. Quantum Electron. l22,1137-1147 (1986).
[CrossRef]

IEEE Plasma Sci. (2)

C. D. Boley and M. A. Rhodes, "Modeling of Plasma Behavior in a Plasma Electrode Pockels Cell," IEEE Plasma Sci. 27, 713-726 (1999).
[CrossRef]

D. Lee, J. M. Park, S.H. Hong and Y. Kim, "Numerical Simulation on Mode Transition of Atmospheric Dielectric Barrier Discharge in Helium-Oxygen Mixture," IEEE Plasma Sci. 33, 949-957 (2005).
[CrossRef]

J. Appl. Phys. (3)

J. P. Boeuf, "A Two-Dimensional model of dc glow discharges," J. Appl. Phys. 63, 1342-1349 (1988).
[CrossRef]

J. J. Shi and M. G. Kong, "Cathode Fall Characteristics in dc Atmospheric Pressure Glow Discharge," J. Appl. Phys. 94, 5504-5513 (2003).
[CrossRef]

J. Gardelle and E. Pasini, "A Simple Operation of a Plasma-Electrode Pockel’s cell for the Laser Megajoules," J. Appl. Phys. 91, 2631-2636 (2002).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

Tran Ngoc An, E. Marode and P. C. Johnson, "Monte Carlo Simulation of Electrons within the Cathode Fall of Glow Discharge," J. Phys. D: Appl. Phys. 10, 2317-2327, (1977).
[CrossRef]

Phys. Rev. A (1)

R. Deloche, P. Monchicourt, M. Cheret and F. Lambert, "High-pressure Helium Afterglow at Room Temperature," Phys. Rev. A 13, 1140 -1176 (1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of PEPC optical switch (in cross section) driven by one-pulse process

Fig. 2.
Fig. 2.

Discharge current

Fig. 3.
Fig. 3.

Distribution of electric field

Fig. 4.
Fig. 4.

Voltage on KDP crystal

Fig. 5.
Fig. 5.

Switch efficiency of the PEPC

Fig. 6.
Fig. 6.

Electron and ion density distributions

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n i t + ψ i = S i
ψ i = q i q i n i v i D i n i x
S e = S p = αn e v e R e n e n p
α = 6.5 P exp ( 16.4 ε ̄ 1 2 )
d ε ̄ dz = E ( z ) ( ε ̄ + U i ) α δ e U e
v e = μ e E = 8.6 × 10 5 ( E P )
v p = μ p E = { 8 × 10 3 [ 1 8 × 10 3 ( E P ) ( E P ) ] E P 25 ( V cm torr ) 4.1 × 10 4 ( E P ) 1 2 [ 1 27.44 ( E P ) 1.5 ] E P > 25 ( V cm torr )
2 V = ρ ε 0 = e ( n p n e ) ε 0
V n ̂ = σ i ε 0 ε r for i = e , p
σ e t = e ( n e v e v de σ e )
σ p t = e ( 1 + γ ) n p v p
η = sin 2 ( π 2 V KDP V π )
V KDP = V sw C sheath ( C sheath + C KDP )
C sheath = 0 ( 2 λ D )
λ D ( cm ) = 740 ( T e n e ) 1 2

Metrics