Abstract

We propose and demonstrate wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light sources based on hybrid four-wave mixing (HFWM) in highly nonlinear, dispersion-shifted fibers (HNL-DSFs). The theory of HFWM between coherent pumps and incoherent signal is analyzed. The degenerate HFWM is demonstrated experimentally in a 1-km-long HNL-DSF, where the coherent pump light is provided by a tunable cw laser source and the incoherent signal light is spectrum-sliced from a broadband amplified spontaneous emission light source. A conversion efficiency of about -20.4 dB and a bandwidth of about 38 nm are measured. The experimental result agrees well with the theoretical analysis.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5,1458-1461 (1993).
    [CrossRef]
  2. P. D. D. Kilkelly, P. J. Chidgey, and G. Hill, "Experimental demonstration of a three channel WDM system over 110 km using superluminescent diodes," Electron. Lett. 26,1671-1673 (1990)
  3. D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, "Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques," IEEE Photon. Technol. Lett. 10,1334-1336 (1998).
    [CrossRef]
  4. J. H. Han, S. J. Kim, and J. S. Lee, "Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-GHz channel spacing," IEEE Photon. Technol. Lett. 11,901-903 (1999).
    [CrossRef]
  5. K. Akimoto, J. Kani, M. Teshima, and K. Iwatsuki, "Super-dense WDM transmission of spectrum-sliced incoherent light for wide-area access network," J. Lightwave Technol. 21,2715-2722 (2003).
    [CrossRef]
  6. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Efficient superfluorescent light sources with broad bandwidth," IEEE J. Sel. Top. Quantum Electron. 3,1097-1099 (1997).
    [CrossRef]
  7. N. S. Kwong, "High-power, broad-hand 1550 nm light source by a tandem combination of a superluminescent diode and an Er-doped fiber ampifier," IEEE Photon. Technol. Lett. 4,996-999 (1992).
    [CrossRef]
  8. D. D. Sampson and W. T. Holloway, "l00 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," Electron. Lett. 30,1611-1612 (1994).
    [CrossRef]
  9. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures," Opt. Lett. 23,1004-1006 (1998).
    [CrossRef]
  10. S. Gao, C. Yang, and G. Jin, "Flat broadband wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16,557-559 (2004).
    [CrossRef]
  11. C. Q. Xu and B. Chen, "Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation," Opt. Lett. 29,292-294 (2004).
    [CrossRef] [PubMed]
  12. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997).
    [CrossRef]
  13. O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).
  14. T. Tanemura and K. Kikuchi, "Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening," IEEE Photon. Technol. Lett. 15,1573-1575 (2003).
    [CrossRef]
  15. K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6,1451-1453 (1994).
    [CrossRef]
  16. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8,560-568 (2002).
    [CrossRef]
  17. Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10,218-220 (1998).
    [CrossRef]
  18. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "cw three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49,5098-5106 (1978).
    [CrossRef]
  19. K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10,1553-1561 (1992).
    [CrossRef]
  20. M. Eiselt, R. M. Jopson, and R. H. Stolen, "Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber," J. Lightwave Technol. 15,135-143 (1997).
    [CrossRef]

2004

S. Gao, C. Yang, and G. Jin, "Flat broadband wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16,557-559 (2004).
[CrossRef]

C. Q. Xu and B. Chen, "Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation," Opt. Lett. 29,292-294 (2004).
[CrossRef] [PubMed]

2003

K. Akimoto, J. Kani, M. Teshima, and K. Iwatsuki, "Super-dense WDM transmission of spectrum-sliced incoherent light for wide-area access network," J. Lightwave Technol. 21,2715-2722 (2003).
[CrossRef]

T. Tanemura and K. Kikuchi, "Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening," IEEE Photon. Technol. Lett. 15,1573-1575 (2003).
[CrossRef]

2002

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8,560-568 (2002).
[CrossRef]

2000

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).

1999

J. H. Han, S. J. Kim, and J. S. Lee, "Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-GHz channel spacing," IEEE Photon. Technol. Lett. 11,901-903 (1999).
[CrossRef]

1998

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, "Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques," IEEE Photon. Technol. Lett. 10,1334-1336 (1998).
[CrossRef]

Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10,218-220 (1998).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures," Opt. Lett. 23,1004-1006 (1998).
[CrossRef]

1997

M. Eiselt, R. M. Jopson, and R. H. Stolen, "Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber," J. Lightwave Technol. 15,135-143 (1997).
[CrossRef]

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Efficient superfluorescent light sources with broad bandwidth," IEEE J. Sel. Top. Quantum Electron. 3,1097-1099 (1997).
[CrossRef]

1994

D. D. Sampson and W. T. Holloway, "l00 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," Electron. Lett. 30,1611-1612 (1994).
[CrossRef]

K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6,1451-1453 (1994).
[CrossRef]

1993

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5,1458-1461 (1993).
[CrossRef]

1992

N. S. Kwong, "High-power, broad-hand 1550 nm light source by a tandem combination of a superluminescent diode and an Er-doped fiber ampifier," IEEE Photon. Technol. Lett. 4,996-999 (1992).
[CrossRef]

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10,1553-1561 (1992).
[CrossRef]

1990

P. D. D. Kilkelly, P. J. Chidgey, and G. Hill, "Experimental demonstration of a three channel WDM system over 110 km using superluminescent diodes," Electron. Lett. 26,1671-1673 (1990)

1978

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "cw three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49,5098-5106 (1978).
[CrossRef]

Akimoto, K.

Arai, S.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).

Arbore, M. A.

Aso, O.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).

Chen, B.

Chidgey, P. J.

P. D. D. Kilkelly, P. J. Chidgey, and G. Hill, "Experimental demonstration of a three channel WDM system over 110 km using superluminescent diodes," Electron. Lett. 26,1671-1673 (1990)

Chou, M. H.

Chung, Y. C.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, "Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques," IEEE Photon. Technol. Lett. 10,1334-1336 (1998).
[CrossRef]

Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10,218-220 (1998).
[CrossRef]

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5,1458-1461 (1993).
[CrossRef]

DiGiovanni, D. J.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5,1458-1461 (1993).
[CrossRef]

Eiselt, M.

M. Eiselt, R. M. Jopson, and R. H. Stolen, "Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber," J. Lightwave Technol. 15,135-143 (1997).
[CrossRef]

Fejer, M. M.

Gao, S.

S. Gao, C. Yang, and G. Jin, "Flat broadband wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16,557-559 (2004).
[CrossRef]

Geraghty, D. F.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997).
[CrossRef]

Han, J. H.

J. H. Han, S. J. Kim, and J. S. Lee, "Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-GHz channel spacing," IEEE Photon. Technol. Lett. 11,901-903 (1999).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Efficient superfluorescent light sources with broad bandwidth," IEEE J. Sel. Top. Quantum Electron. 3,1097-1099 (1997).
[CrossRef]

Hauden, J.

Hill, G.

P. D. D. Kilkelly, P. J. Chidgey, and G. Hill, "Experimental demonstration of a three channel WDM system over 110 km using superluminescent diodes," Electron. Lett. 26,1671-1673 (1990)

Hill, K. O.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "cw three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49,5098-5106 (1978).
[CrossRef]

Holloway, W. T.

D. D. Sampson and W. T. Holloway, "l00 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," Electron. Lett. 30,1611-1612 (1994).
[CrossRef]

Inoue, K.

K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6,1451-1453 (1994).
[CrossRef]

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10,1553-1561 (1992).
[CrossRef]

Iwatsuki, K.

Jang, Y. S.

Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10,218-220 (1998).
[CrossRef]

Jin, G.

S. Gao, C. Yang, and G. Jin, "Flat broadband wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16,557-559 (2004).
[CrossRef]

Johnson, D. C.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "cw three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49,5098-5106 (1978).
[CrossRef]

Jopson, R. M.

M. Eiselt, R. M. Jopson, and R. H. Stolen, "Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber," J. Lightwave Technol. 15,135-143 (1997).
[CrossRef]

Jung, D. K.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, "Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques," IEEE Photon. Technol. Lett. 10,1334-1336 (1998).
[CrossRef]

Kani, J.

Kawasaki, B. S.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "cw three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49,5098-5106 (1978).
[CrossRef]

Kazovsky, L. G.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8,560-568 (2002).
[CrossRef]

Kikuchi, K.

T. Tanemura and K. Kikuchi, "Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening," IEEE Photon. Technol. Lett. 15,1573-1575 (2003).
[CrossRef]

Kilkelly, P. D. D.

P. D. D. Kilkelly, P. J. Chidgey, and G. Hill, "Experimental demonstration of a three channel WDM system over 110 km using superluminescent diodes," Electron. Lett. 26,1671-1673 (1990)

Kim, S. J.

J. H. Han, S. J. Kim, and J. S. Lee, "Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-GHz channel spacing," IEEE Photon. Technol. Lett. 11,901-903 (1999).
[CrossRef]

Kwong, N. S.

N. S. Kwong, "High-power, broad-hand 1550 nm light source by a tandem combination of a superluminescent diode and an Er-doped fiber ampifier," IEEE Photon. Technol. Lett. 4,996-999 (1992).
[CrossRef]

Lee, C.-H.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, "Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques," IEEE Photon. Technol. Lett. 10,1334-1336 (1998).
[CrossRef]

Lee, J. S.

J. H. Han, S. J. Kim, and J. S. Lee, "Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-GHz channel spacing," IEEE Photon. Technol. Lett. 11,901-903 (1999).
[CrossRef]

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5,1458-1461 (1993).
[CrossRef]

Lee, R. B.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997).
[CrossRef]

MacDonald, R. I.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "cw three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49,5098-5106 (1978).
[CrossRef]

Marhic, M. E.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8,560-568 (2002).
[CrossRef]

Mathur, A.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997).
[CrossRef]

Namiki, S.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Efficient superfluorescent light sources with broad bandwidth," IEEE J. Sel. Top. Quantum Electron. 3,1097-1099 (1997).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Efficient superfluorescent light sources with broad bandwidth," IEEE J. Sel. Top. Quantum Electron. 3,1097-1099 (1997).
[CrossRef]

Sampson, D. D.

D. D. Sampson and W. T. Holloway, "l00 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," Electron. Lett. 30,1611-1612 (1994).
[CrossRef]

Shin, S. K.

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, "Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques," IEEE Photon. Technol. Lett. 10,1334-1336 (1998).
[CrossRef]

Stolen, R. H.

M. Eiselt, R. M. Jopson, and R. H. Stolen, "Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber," J. Lightwave Technol. 15,135-143 (1997).
[CrossRef]

Suzuki, Y.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).

Tadakuma, M.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).

Tanemura, T.

T. Tanemura and K. Kikuchi, "Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening," IEEE Photon. Technol. Lett. 15,1573-1575 (2003).
[CrossRef]

Teshima, M.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Efficient superfluorescent light sources with broad bandwidth," IEEE J. Sel. Top. Quantum Electron. 3,1097-1099 (1997).
[CrossRef]

Uesaka, K.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8,560-568 (2002).
[CrossRef]

Vahala, K. J.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997).
[CrossRef]

Verdiell, M.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997).
[CrossRef]

Wong, K. K. Y.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8,560-568 (2002).
[CrossRef]

Xu, C. Q.

Yagi, T.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).

Yang, C.

S. Gao, C. Yang, and G. Jin, "Flat broadband wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16,557-559 (2004).
[CrossRef]

Ziari, M.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997).
[CrossRef]

Electron. Lett.

P. D. D. Kilkelly, P. J. Chidgey, and G. Hill, "Experimental demonstration of a three channel WDM system over 110 km using superluminescent diodes," Electron. Lett. 26,1671-1673 (1990)

D. D. Sampson and W. T. Holloway, "l00 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," Electron. Lett. 30,1611-1612 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Efficient superfluorescent light sources with broad bandwidth," IEEE J. Sel. Top. Quantum Electron. 3,1097-1099 (1997).
[CrossRef]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8,560-568 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10,218-220 (1998).
[CrossRef]

S. Gao, C. Yang, and G. Jin, "Flat broadband wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16,557-559 (2004).
[CrossRef]

N. S. Kwong, "High-power, broad-hand 1550 nm light source by a tandem combination of a superluminescent diode and an Er-doped fiber ampifier," IEEE Photon. Technol. Lett. 4,996-999 (1992).
[CrossRef]

D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, "Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques," IEEE Photon. Technol. Lett. 10,1334-1336 (1998).
[CrossRef]

J. H. Han, S. J. Kim, and J. S. Lee, "Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-GHz channel spacing," IEEE Photon. Technol. Lett. 11,901-903 (1999).
[CrossRef]

T. Tanemura and K. Kikuchi, "Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening," IEEE Photon. Technol. Lett. 15,1573-1575 (2003).
[CrossRef]

K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6,1451-1453 (1994).
[CrossRef]

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5,1458-1461 (1993).
[CrossRef]

IEICE Trans. Electron.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).

J. Appl. Phys.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "cw three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49,5098-5106 (1978).
[CrossRef]

J. Lightwave Technol.

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10,1553-1561 (1992).
[CrossRef]

M. Eiselt, R. M. Jopson, and R. H. Stolen, "Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber," J. Lightwave Technol. 15,135-143 (1997).
[CrossRef]

K. Akimoto, J. Kani, M. Teshima, and K. Iwatsuki, "Super-dense WDM transmission of spectrum-sliced incoherent light for wide-area access network," J. Lightwave Technol. 21,2715-2722 (2003).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup to demonstrate wavelength conversion of spectrum-sliced ASE broadband light source. EDFA: erbium-doped fiber amplifier, PC: polarization controller, BPF: band-pass filter, HNL-DSF: highly nonlinear dispersion-shifted fiber, OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

Observed wavelength conversion spectrum of spectrum-sliced ASE broadband source. The pump light is set at 1543 nm, the signal light is centered at 1548 nm with a spectral width of about 2 nm, and the converted signal is generated around 1538 nm.

Fig. 3.
Fig. 3.

Normalized conversion efficiency versus the signal wavelength. The opened circles are the measured values and the solid line is the theoretically result.

Fig. 4.
Fig. 4.

Conversion bandwidth versus the pump wavelength. The closed squares are the measured results and the solid line is the theoretical calculation.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E pi z t = E pi exp ( αz 2 ) exp ( j 2 π f pi t j β pi z ) , ( i = 1,2 )
E s z t = E s 0 f s z exp ( j 2 π f s t j β s z ) d f s
E s 0 f s z = E s 0 ( f s ) exp ( αz 2 )
d E F 0 f F z dz = α E F 0 f F z 2 + j ( 4 π 2 n λ F ) ( D χ ) E p 1 E p 2 E s 0 * ( f s ) exp ( 3 αz 2 + j Δ βz )
E F 0 f F L = j ( 4 π 2 2 λ F ) ( D χ ) e αL 2 E p 1 E p 2 E * s 0 ( f s ) { [ e ( j Δ β α ) L 1 ] ( j Δ β α ) }
P F 0 f F L = ( 1024 π 6 n 4 λ F 2 c 2 ) ( D χ ) 2 ( L eff 2 A eff 2 ) e αL P p 1 P p 2 P s 0 ( f s ) η ( Δ β )
η ( Δ β ) = { α 2 [ α 2 + ( Δ β ) 2 ] } [ 1 + 4 e αL sin 2 ( Δ βL 2 ) ( 1 e αL ) 2 ]
Δ β = β p 1 + β p 2 β s β F
= π λ 4 3 c 2 d D c d λ [ ( f p 1 f 0 ) 3 + ( f p 2 f 0 ) 3 ( f s f 0 ) 3 ( f F f 0 ) 3 ]
[ π λ 5 2 c 3 d D c d λ + π λ 6 2 c 3 d 2 D c d λ 2 ] [ ( f p 1 f 0 ) 4 + ( f p 2 f 0 ) 4 ( f s f 0 ) 4 ( f F f 0 ) 4 ]
P NLeff = ( D χ xxxx ) E p 1 E p 2 E s 0 ( 1 2 π ) 0 2 π ( 4 cos 2 θ + 5 3 )
χ eff = χ xxxx ( 1 2 π ) 0 2 π ( 4 cos 2 θ + 5 3 ) = 0.71 χ xxxx
P F f F L = ( 1024 π 6 n 4 c 2 ) ( D χ eff ) 2 ( L eff 2 A eff 2 ) e αL P p 1 P p 2 1 λ F 2 P s 0 ( f s ) η ( Δ β ) d f s
η = 10 log [ P F f F L P s f s 0 ]

Metrics