Abstract

We designed and fabricated a centrosymmetric material where one may be able to consider an efficient quadratic nonlinear interaction. We followed a solid phase-supported organic synthesis methodology to covalently bind a large number of highly nonlinear molecules to the surface of polystyrene nanospheres. Such chemically modified optically nonlinear latex spheres, when suspended in water, are seen to perfectly self-organize into a centrosymmetric lattice. Taking advantage of the nonlinear interaction located at the sphere-water interface and the photonic crystal properties of the fabricated material we were able to generate second-harmonic light visible to the naked eye.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, the Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).
  2. J. Martorell, R. Corbalan, R. Vilaseca and J. Trull, Photonic Band Gap Materials, C. M.  Soukoulis, ed.(Kluwer Academic Publishers, Netherlands, 1996), pp. 529-534.
  3. J. Martorell, R. Vilaseca, and R. Corbalán, "Second-harmonic generation in a photonic crystal," Appl. Phys. Lett. 70, 702-704 (1997).
    [CrossRef]
  4. P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
    [CrossRef]
  5. R. J. Carlson and S. A. Asher, "Characterization of optical diffraction and crystal-structure in monodisperse polystyrene colloids," Appl. Spectrosc. 38, 297-304 (1984).
    [CrossRef]
  6. The Latex we used was supplied from IKERLAT polymers (http://www.ikerlatpolymers.es/).
  7. S. R. Marder, J. W. Perry, C. P. Yakymyshyn, "Organic salts with large 2nd-order optical nonlinearities," Chem. Mater. 6, 1137-1147 (1994).
    [CrossRef]
  8. A. Molinos-Gómez, M. Maymó, X. Vidal, J. Martorell, D. Velasco and F. López Calahorra are preparing a paper to be called "Second-harmonic generation in colloidal photonic crystals chemically modified with nonlinear optical chromophores."
  9. S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, "Difraction in crystalline colloidal-array photonic crystals," Phys. Rev. E 69, 066619 (2004).
    [CrossRef]
  10. G. Marowsky, A. Gierulski, and R. Steinhoff, D. Dorsch, R. Eidenschnik, and B. Rieger, "Efficiency studies of 2nd-harmonic-active organic-dye coverages," J. Opt. Soc. Am. B 4, 956-961 (1987).
    [CrossRef]
  11. Y. Maruyama, M. Ishikawa, and H. Satozono, "Femtosecond isomerization of crystal violet in alcohols," J. Am. Chem. Soc. 118, 6257-6263 (1996).
    [CrossRef]
  12. J. Martorell, R. Vilaseca, and R. Corbalán, "Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice," Phys. Rev. A. 55, 4520-4525 (1997).
    [CrossRef]
  13. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, "Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material," Phys. Rev. Lett. 83, 4045-4048 (1999).
    [CrossRef]
  14. N. Yang, W. E. Angerer, and A. G. Yodh, "Angle-resolved second-harmonic light scattering from colloidal particles," Phys. Rev. Lett. 87, 103902 (2001).
    [CrossRef] [PubMed]
  15. W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, "Second-harmonic generation in arrays of spherical particles," Phys. Rev. B 68,085318 (2003).
    [CrossRef]
  16. J. Martorell, "Parametric nonlinear interaction in centrosymmetric three-dimensional photonic crystals," J. Opt. Soc. Am. B 19, 2075-2082 (2002).
    [CrossRef]
  17. J. E. Sipe, "New Green-function formalism for surface optics," J. Opt. Soc. Am. B 4, 481-489 (1987).
    [CrossRef]
  18. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
    [CrossRef]
  19. N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
    [CrossRef]
  20. J. Martorell, "Broadband efficient nonlinear difference generation in a counterpropagating configuration," Appl. Phys. Lett. 86, 241113 (2005).
    [CrossRef]
  21. S. E. Harris, "Proposed backward wave oscillation in infrared," Appl. Phys. Lett. 9, 114 (1966).
    [CrossRef]
  22. Y-C. Huang, "Theory of backward distributed-feedback optical parametric amplifiers and oscillators," J. Opt. Soc. Am. B 22, 1244-1254 (2005).
    [CrossRef]

2005 (2)

J. Martorell, "Broadband efficient nonlinear difference generation in a counterpropagating configuration," Appl. Phys. Lett. 86, 241113 (2005).
[CrossRef]

Y-C. Huang, "Theory of backward distributed-feedback optical parametric amplifiers and oscillators," J. Opt. Soc. Am. B 22, 1244-1254 (2005).
[CrossRef]

2004 (1)

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, "Difraction in crystalline colloidal-array photonic crystals," Phys. Rev. E 69, 066619 (2004).
[CrossRef]

2003 (1)

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, "Second-harmonic generation in arrays of spherical particles," Phys. Rev. B 68,085318 (2003).
[CrossRef]

2002 (1)

2001 (1)

N. Yang, W. E. Angerer, and A. G. Yodh, "Angle-resolved second-harmonic light scattering from colloidal particles," Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef] [PubMed]

1999 (1)

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, "Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material," Phys. Rev. Lett. 83, 4045-4048 (1999).
[CrossRef]

1997 (3)

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalán, "Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice," Phys. Rev. A. 55, 4520-4525 (1997).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalán, "Second-harmonic generation in a photonic crystal," Appl. Phys. Lett. 70, 702-704 (1997).
[CrossRef]

1996 (1)

Y. Maruyama, M. Ishikawa, and H. Satozono, "Femtosecond isomerization of crystal violet in alcohols," J. Am. Chem. Soc. 118, 6257-6263 (1996).
[CrossRef]

1994 (1)

S. R. Marder, J. W. Perry, C. P. Yakymyshyn, "Organic salts with large 2nd-order optical nonlinearities," Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

1987 (2)

1984 (1)

1970 (1)

N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
[CrossRef]

1969 (1)

P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
[CrossRef]

1966 (1)

S. E. Harris, "Proposed backward wave oscillation in infrared," Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

Angerer, W. E.

N. Yang, W. E. Angerer, and A. G. Yodh, "Angle-resolved second-harmonic light scattering from colloidal particles," Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef] [PubMed]

Asher, S. A.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, "Difraction in crystalline colloidal-array photonic crystals," Phys. Rev. E 69, 066619 (2004).
[CrossRef]

R. J. Carlson and S. A. Asher, "Characterization of optical diffraction and crystal-structure in monodisperse polystyrene colloids," Appl. Spectrosc. 38, 297-304 (1984).
[CrossRef]

Bloembergen, N.

N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
[CrossRef]

Bloemer, M. J.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
[CrossRef]

Bowden, C. M.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
[CrossRef]

Brudny, V. L.

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, "Second-harmonic generation in arrays of spherical particles," Phys. Rev. B 68,085318 (2003).
[CrossRef]

Carlson, R. J.

Coalson, R. D.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, "Difraction in crystalline colloidal-array photonic crystals," Phys. Rev. E 69, 066619 (2004).
[CrossRef]

Corbalán, R.

J. Martorell, R. Vilaseca, and R. Corbalán, "Second-harmonic generation in a photonic crystal," Appl. Phys. Lett. 70, 702-704 (1997).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalán, "Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice," Phys. Rev. A. 55, 4520-4525 (1997).
[CrossRef]

Dadap, J. I.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, "Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material," Phys. Rev. Lett. 83, 4045-4048 (1999).
[CrossRef]

Dorsch, D.

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
[CrossRef]

Eidenschnik, R.

Eisenthal, K. B.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, "Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material," Phys. Rev. Lett. 83, 4045-4048 (1999).
[CrossRef]

Gierulski, A.

Harris, S. E.

S. E. Harris, "Proposed backward wave oscillation in infrared," Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

Haus, J. W.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
[CrossRef]

Heinz, T. F.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, "Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material," Phys. Rev. Lett. 83, 4045-4048 (1999).
[CrossRef]

Hiltner, P. A.

P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
[CrossRef]

Huang, Y-C.

Ishikawa, M.

Y. Maruyama, M. Ishikawa, and H. Satozono, "Femtosecond isomerization of crystal violet in alcohols," J. Am. Chem. Soc. 118, 6257-6263 (1996).
[CrossRef]

Kesavamoorthy, R.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, "Difraction in crystalline colloidal-array photonic crystals," Phys. Rev. E 69, 066619 (2004).
[CrossRef]

Krieger, I. M.

P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
[CrossRef]

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
[CrossRef]

Marder, S. R.

S. R. Marder, J. W. Perry, C. P. Yakymyshyn, "Organic salts with large 2nd-order optical nonlinearities," Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

Marowsky, G.

Martorell, J.

J. Martorell, "Broadband efficient nonlinear difference generation in a counterpropagating configuration," Appl. Phys. Lett. 86, 241113 (2005).
[CrossRef]

J. Martorell, "Parametric nonlinear interaction in centrosymmetric three-dimensional photonic crystals," J. Opt. Soc. Am. B 19, 2075-2082 (2002).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalán, "Second-harmonic generation in a photonic crystal," Appl. Phys. Lett. 70, 702-704 (1997).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalán, "Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice," Phys. Rev. A. 55, 4520-4525 (1997).
[CrossRef]

Maruyama, Y.

Y. Maruyama, M. Ishikawa, and H. Satozono, "Femtosecond isomerization of crystal violet in alcohols," J. Am. Chem. Soc. 118, 6257-6263 (1996).
[CrossRef]

Maytorena, J. A.

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, "Second-harmonic generation in arrays of spherical particles," Phys. Rev. B 68,085318 (2003).
[CrossRef]

Mendoza, B. S.

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, "Second-harmonic generation in arrays of spherical particles," Phys. Rev. B 68,085318 (2003).
[CrossRef]

Mochan, W. L.

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, "Second-harmonic generation in arrays of spherical particles," Phys. Rev. B 68,085318 (2003).
[CrossRef]

Perry, J. W.

S. R. Marder, J. W. Perry, C. P. Yakymyshyn, "Organic salts with large 2nd-order optical nonlinearities," Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

Rieger, B.

Satozono, H.

Y. Maruyama, M. Ishikawa, and H. Satozono, "Femtosecond isomerization of crystal violet in alcohols," J. Am. Chem. Soc. 118, 6257-6263 (1996).
[CrossRef]

Scalora, M.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
[CrossRef]

Shan, J.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, "Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material," Phys. Rev. Lett. 83, 4045-4048 (1999).
[CrossRef]

Sievers, A. J.

N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
[CrossRef]

Sipe, J. E.

Steinhoff, R.

Tikhonov, A.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, "Difraction in crystalline colloidal-array photonic crystals," Phys. Rev. E 69, 066619 (2004).
[CrossRef]

Vilaseca, R.

J. Martorell, R. Vilaseca, and R. Corbalán, "Second-harmonic generation in a photonic crystal," Appl. Phys. Lett. 70, 702-704 (1997).
[CrossRef]

J. Martorell, R. Vilaseca, and R. Corbalán, "Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice," Phys. Rev. A. 55, 4520-4525 (1997).
[CrossRef]

Viswanathan, R.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
[CrossRef]

Weissman, J. M.

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, "Difraction in crystalline colloidal-array photonic crystals," Phys. Rev. E 69, 066619 (2004).
[CrossRef]

Yakymyshyn, C. P.

S. R. Marder, J. W. Perry, C. P. Yakymyshyn, "Organic salts with large 2nd-order optical nonlinearities," Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

Yang, N.

N. Yang, W. E. Angerer, and A. G. Yodh, "Angle-resolved second-harmonic light scattering from colloidal particles," Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef] [PubMed]

Yodh, A. G.

N. Yang, W. E. Angerer, and A. G. Yodh, "Angle-resolved second-harmonic light scattering from colloidal particles," Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

J. Martorell, R. Vilaseca, and R. Corbalán, "Second-harmonic generation in a photonic crystal," Appl. Phys. Lett. 70, 702-704 (1997).
[CrossRef]

N. Bloembergen and A. J. Sievers, "Nonlinear optical properties of periodic laminar structures," Appl. Phys. Lett. 17, 483-486 (1970).
[CrossRef]

J. Martorell, "Broadband efficient nonlinear difference generation in a counterpropagating configuration," Appl. Phys. Lett. 86, 241113 (2005).
[CrossRef]

S. E. Harris, "Proposed backward wave oscillation in infrared," Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Mater. (1)

S. R. Marder, J. W. Perry, C. P. Yakymyshyn, "Organic salts with large 2nd-order optical nonlinearities," Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

J. Am. Chem. Soc. (1)

Y. Maruyama, M. Ishikawa, and H. Satozono, "Femtosecond isomerization of crystal violet in alcohols," J. Am. Chem. Soc. 118, 6257-6263 (1996).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. (1)

P. A. Hiltner and I. M. Krieger, "Diffraction of light by ordered suspensions," J. Phys. Chem. 73, 2386-2389 (1969).
[CrossRef]

Phys. Rev. A (1)

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, " Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997).
[CrossRef]

Phys. Rev. A. (1)

J. Martorell, R. Vilaseca, and R. Corbalán, "Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice," Phys. Rev. A. 55, 4520-4525 (1997).
[CrossRef]

Phys. Rev. B (1)

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, "Second-harmonic generation in arrays of spherical particles," Phys. Rev. B 68,085318 (2003).
[CrossRef]

Phys. Rev. E (1)

S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, "Difraction in crystalline colloidal-array photonic crystals," Phys. Rev. E 69, 066619 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, "Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material," Phys. Rev. Lett. 83, 4045-4048 (1999).
[CrossRef]

N. Yang, W. E. Angerer, and A. G. Yodh, "Angle-resolved second-harmonic light scattering from colloidal particles," Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef] [PubMed]

Other (4)

Y. R. Shen, the Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).

J. Martorell, R. Corbalan, R. Vilaseca and J. Trull, Photonic Band Gap Materials, C. M.  Soukoulis, ed.(Kluwer Academic Publishers, Netherlands, 1996), pp. 529-534.

A. Molinos-Gómez, M. Maymó, X. Vidal, J. Martorell, D. Velasco and F. López Calahorra are preparing a paper to be called "Second-harmonic generation in colloidal photonic crystals chemically modified with nonlinear optical chromophores."

The Latex we used was supplied from IKERLAT polymers (http://www.ikerlatpolymers.es/).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic representation of the ethanol CV bonded onto the polystyrene sphere surface. The pyramidal shape of the molecule results in a breaking of the centrosymmetry of CV as schematically shown with a red arrow. The green line corresponds to one wavelength of the SH light. While the sphere and the wave are drawn at a similar scale, the CV molecule is shown pictorially many times larger in relation to the other elements of the figure.

Fig. 2.
Fig. 2.

Second-harmonic generation within a 3-D photonic crystal. SH intensity as a function of the angle of incidence. The blue solid dots correspond to the experimental measurements while the red solid line corresponds to a theoretical fit using the model briefly described in the text.

Fig. 3.
Fig. 3.

Experimentally measured, p-pol (green solid dots) and s-pol, (red open circles) SH intensity as a function of the angle of polarization for the fundamental field. The blue dashed line and red solid line correspond to the theoretical fits using the same model mentioned above.

Fig. 4.
Fig. 4.

Second-harmonic generation from 1 plane and 907 planes. Reflected SH intensity from one plane (right-hand side axis) for spheres of 120 (green dotted line), 147 (blue dashed line), and 170 (black dot-dashed line) nm in diameter. Transmitted SH intensity from 907 planes (red solid line and left-hand side axis) of 147 nm in diameter spheres.

Fig. 5.
Fig. 5.

A picture of the generated green light diffused from a white card. The photograph was taken using a Nikon D70 digital camera with the room lights switched off and an exposition time of 25 seconds. This picture is superimposed with a photograph of a partial view of the experimental set up, taken using the camera built-in flash, where the CV colloidal crystal appears on the right hand side of the picture. From the photograph one sees that green light is generated in a very nicely collimated beam. The infrared laser pulse is coming form the right hand side of the picture and the generated light in reflection is coming form the opposite face of the crystal not visible in the picture.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P i nl (r)= χ ijk (2) (r) E j (r) E k (r)

Metrics