Abstract

We suggest that tunable orientational nonlinearity of nematic liquid crystals can be employed for all-optical switching in periodic photonic structures with liquid-crystal defects. We consider a one-dimensional periodic structure of Si layers with a local defect created by infiltrating a liquid crystal into a pore, and demonstrate, by solving numerically a system of coupled nonlinear equations for the nematic director and the propagating electric field, that the light-induced Freedericksz transition can lead to a sharp switching and diode operation in the photonic devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NY, 1995).
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  3. K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
    [CrossRef]
  4. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
    [CrossRef]
  5. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
    [CrossRef]
  6. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-IV semiconductor slab wavelengths using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
    [CrossRef]
  7. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng,"Optical devices based on liquid crystal photonic bandgap fibers," Opt. Express 11, 2589-2596 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589
    [CrossRef] [PubMed]
  8. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquidcrystal-filled silica photonic crystals: Effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
    [CrossRef] [PubMed]
  9. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
    [CrossRef] [PubMed]
  10. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005).
    [CrossRef]
  11. S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, "Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration," Opt. Lett. 29, 2858-2860 (2004).
    [CrossRef]
  12. I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, "Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters," Opt. Express 11, 430-436 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-430
    [CrossRef] [PubMed]
  13. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
    [CrossRef]
  14. E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
    [CrossRef]
  15. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems, "Appl. Phys. Lett. 80, 908-910 (2002).
    [CrossRef]
  16. A. E. Miroshnichenko and Y. S. Kivshar," Sharp bends in photonic crystal waveguides as nonlinear Fano resonators," Opt. Express 13, 3969-3976 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3969
    [CrossRef] [PubMed]
  17. B. Ya. Zel’dovich, N. V. Tabiryan, and Yu. S. Chilingaryan, "Freedericksz transition induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72 (1981) [Sov. Phys.-JETP 81, 72 (1981)].
  18. I. C. Khoo, "Optically induced molecular reorientation and third order nonlinear processes in nematic liquid crystals," Phys. Rev. A 23, 2077-2081 (1981).
    [CrossRef]
  19. H. L. Ong, "Optically induced Freedericksz transition and bistability in a nematic liquid crystal," Phys. Rev. A 28, 2393-2407 (1983).
    [CrossRef]
  20. N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, "Orientational optical nonlinearity of liquid crystals," Mol. Cryst. Liq. Cryst. 136, 1-131 (1986).
    [CrossRef]
  21. P. G. de Gennes, The Physics of Liquid Crystals, (Clarendon Press, Oxford, 1979).
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++, (Cambridge University Press, 2002).
  23. M. J. Stephen, and J. P. Straley, "Physics of Liquid Crystals," Rev. Mod. Phys. 46, 617-704 (1974).
    [CrossRef]
  24. P. Yeh, Optical Waves in Layered Media, (John Wiley & Sons, New York, 1988).
  25. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994).
    [CrossRef]
  26. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide,"Appl. Phys. Lett. 79, 314-316 (2001).
    [CrossRef]

2005

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005).
[CrossRef]

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

A. E. Miroshnichenko and Y. S. Kivshar," Sharp bends in photonic crystal waveguides as nonlinear Fano resonators," Opt. Express 13, 3969-3976 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3969
[CrossRef] [PubMed]

2004

2003

2002

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems, "Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

2001

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquidcrystal-filled silica photonic crystals: Effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide,"Appl. Phys. Lett. 79, 314-316 (2001).
[CrossRef]

2000

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

1999

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

1994

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994).
[CrossRef]

1987

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

1986

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, "Orientational optical nonlinearity of liquid crystals," Mol. Cryst. Liq. Cryst. 136, 1-131 (1986).
[CrossRef]

1983

H. L. Ong, "Optically induced Freedericksz transition and bistability in a nematic liquid crystal," Phys. Rev. A 28, 2393-2407 (1983).
[CrossRef]

1981

B. Ya. Zel’dovich, N. V. Tabiryan, and Yu. S. Chilingaryan, "Freedericksz transition induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72 (1981) [Sov. Phys.-JETP 81, 72 (1981)].

I. C. Khoo, "Optically induced molecular reorientation and third order nonlinear processes in nematic liquid crystals," Phys. Rev. A 23, 2077-2081 (1981).
[CrossRef]

1974

M. J. Stephen, and J. P. Straley, "Physics of Liquid Crystals," Rev. Mod. Phys. 46, 617-704 (1974).
[CrossRef]

Arregui, F. J.

Assanto, G.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide,"Appl. Phys. Lett. 79, 314-316 (2001).
[CrossRef]

Baughman, R. H.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquidcrystal-filled silica photonic crystals: Effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Birner, A.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Bjarklev, A.

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994).
[CrossRef]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994).
[CrossRef]

Broeng, J.

Busch, K.

S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, "Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration," Opt. Lett. 29, 2858-2860 (2004).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Chilingaryan, Yu. S.

B. Ya. Zel’dovich, N. V. Tabiryan, and Yu. S. Chilingaryan, "Freedericksz transition induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72 (1981) [Sov. Phys.-JETP 81, 72 (1981)].

Clark, N. A.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquidcrystal-filled silica photonic crystals: Effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Claus, R. O.

Crawford, G. P.

Del Villar, I.

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994).
[CrossRef]

Escuti, M. J.

Fan, S.

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems, "Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

Fejer, M. M.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide,"Appl. Phys. Lett. 79, 314-316 (2001).
[CrossRef]

Forchel, A.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-IV semiconductor slab wavelengths using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Gallo, K.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide,"Appl. Phys. Lett. 79, 314-316 (2001).
[CrossRef]

Gösele, U.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Graugnard, E.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005).
[CrossRef]

Hermann, D.

Hermann, D. S.

Jain, S.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005).
[CrossRef]

John, S.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Kamp, M.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-IV semiconductor slab wavelengths using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Kang, D.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquidcrystal-filled silica photonic crystals: Effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Khoo, I. C.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005).
[CrossRef]

I. C. Khoo, "Optically induced molecular reorientation and third order nonlinear processes in nematic liquid crystals," Phys. Rev. A 23, 2077-2081 (1981).
[CrossRef]

King, J. S.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005).
[CrossRef]

Kivshar, Y. S.

Klopf, F.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-IV semiconductor slab wavelengths using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Kosmidou, E. P.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

Kriezis, E. E.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

Larsen, T. T.

Lehmann, V.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Leonard, S. W.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Maclennan, J. E.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquidcrystal-filled silica photonic crystals: Effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Matias, I. R.

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

Mingaleev, S. F.

Miroshnichenko, A. E.

Mondia, J. P.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Ong, H. L.

H. L. Ong, "Optically induced Freedericksz transition and bistability in a nematic liquid crystal," Phys. Rev. A 28, 2393-2407 (1983).
[CrossRef]

Ozaki, M.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

Parameswaran, K. R.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide,"Appl. Phys. Lett. 79, 314-316 (2001).
[CrossRef]

Qi, J.

Reithmaier, J. P.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-IV semiconductor slab wavelengths using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994).
[CrossRef]

Schillinger, M.

Schuller, Ch.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-IV semiconductor slab wavelengths using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Stephen, M. J.

M. J. Stephen, and J. P. Straley, "Physics of Liquid Crystals," Rev. Mod. Phys. 46, 617-704 (1974).
[CrossRef]

Straley, J. P.

M. J. Stephen, and J. P. Straley, "Physics of Liquid Crystals," Rev. Mod. Phys. 46, 617-704 (1974).
[CrossRef]

Sukhov, A. V.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, "Orientational optical nonlinearity of liquid crystals," Mol. Cryst. Liq. Cryst. 136, 1-131 (1986).
[CrossRef]

Summers, C. J.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005).
[CrossRef]

Tabiryan, N. V.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, "Orientational optical nonlinearity of liquid crystals," Mol. Cryst. Liq. Cryst. 136, 1-131 (1986).
[CrossRef]

B. Ya. Zel’dovich, N. V. Tabiryan, and Yu. S. Chilingaryan, "Freedericksz transition induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72 (1981) [Sov. Phys.-JETP 81, 72 (1981)].

Toader, O.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Tsiboukis, T. D.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

van Driel, H. M.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Zakhidov, A. A.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquidcrystal-filled silica photonic crystals: Effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Zel’dovich, B. Ya.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, "Orientational optical nonlinearity of liquid crystals," Mol. Cryst. Liq. Cryst. 136, 1-131 (1986).
[CrossRef]

B. Ya. Zel’dovich, N. V. Tabiryan, and Yu. S. Chilingaryan, "Freedericksz transition induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72 (1981) [Sov. Phys.-JETP 81, 72 (1981)].

Zhang-Williams, Y.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005).
[CrossRef]

Appl. Phys. Lett.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-IV semiconductor slab wavelengths using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide,"Appl. Phys. Lett. 79, 314-316 (2001).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems, "Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

IEEE J. Quantum Electron.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

J. Appl. Phys.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994).
[CrossRef]

Mol. Cryst. Liq. Cryst.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, "Orientational optical nonlinearity of liquid crystals," Mol. Cryst. Liq. Cryst. 136, 1-131 (1986).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

I. C. Khoo, "Optically induced molecular reorientation and third order nonlinear processes in nematic liquid crystals," Phys. Rev. A 23, 2077-2081 (1981).
[CrossRef]

H. L. Ong, "Optically induced Freedericksz transition and bistability in a nematic liquid crystal," Phys. Rev. A 28, 2393-2407 (1983).
[CrossRef]

Phys. Rev. B

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquidcrystal-filled silica photonic crystals: Effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys.

M. J. Stephen, and J. P. Straley, "Physics of Liquid Crystals," Rev. Mod. Phys. 46, 617-704 (1974).
[CrossRef]

Zh. Eksp. Teor. Fiz.

B. Ya. Zel’dovich, N. V. Tabiryan, and Yu. S. Chilingaryan, "Freedericksz transition induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72 (1981) [Sov. Phys.-JETP 81, 72 (1981)].

Other

P. Yeh, Optical Waves in Layered Media, (John Wiley & Sons, New York, 1988).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NY, 1995).

P. G. de Gennes, The Physics of Liquid Crystals, (Clarendon Press, Oxford, 1979).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++, (Cambridge University Press, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Nonlinear transmission of a liquid-crystal slab. (a) Schematic of the problem. (b,c) Maximum angle of the director and transmission vs. the light intensity in the slab. Blue and red curves correspond to the increasing and decreasing light intensity, respectively.

Fig. 2.
Fig. 2.

Transmission of an one-dimensional periodic structure with an embedded liquid-crystal defect. In the linear regime, the transmission is characterized by the presence of an in-gap resonant peak due to the excitation of a defect mode. Nonlinear transmission displays bistability at the defect-mode frequency with two different thresholds for ”up” and ”down” directions and a hysteresis loop (see the insert).

Fig. 3.
Fig. 3.

Example of a tunable all-optical diode based on the optical Freedericksz transition in a liquid-crystal defect. Asymmetrically placed defect leads to different threshold intensities of the switching for the waves propagating from the right and left, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f = f el + f opt ,
f el = 1 2 [ K 11 ( n ) 2 + K 22 ( n × n ) 2 + K 33 ( n × × n ) 2 ] ,
f opt = ( 1 16 π ) D E * ,
f el = 1 2 ( K 11 sin 2 ϕ + K 33 cos 2 ϕ ) ( dz ) 2 .
ε ̂ = ( ε + ε a sin 2 ϕ 0 ε a sin ϕ cos ϕ 0 ε 0 ε a sin ϕ cos ϕ 0 ε + ε a cos 2 ϕ ) .
f opt = ε a 16 π [ sin 2 ϕ E x 2 + cos 2 ϕ E z + + sin ϕ cos ϕ ( E x E z * + E z E x * ) ] ε 16 π E 2 .
A ( ϕ ) d 2 ϕ d z 2 B ( ϕ ) ( dz ) 2 + ε a ε ( ε a + ε ) E x 2 sin 2 ϕ 16 π ( ε + ε a cos 2 ϕ ) 2 = 0 ,
d 2 E x d z 2 + k 2 ε ( ε + ε a ) ε + ε a cos 2 ϕ E x = 0 ,
ϕ ( 0 ) = ϕ ( L ) = 0 ,
E x ( z ) = { in exp ( ikz ) + ref exp ( ikz ) , z 0 , out exp ( ikz ) , z L ,

Metrics