Abstract

We study parametric amplification in optical fibers for chirped-pulse femtosecond laser systems. Compared to conventional OPCPA operating in bulk crystals, the fiber geometry offers a greater interaction length and spatial confinement, an increased flexibility in the choice of wavelengths for signal and pump beams, and the robustness of fiber setups. As opposed to rare-earth doped fibers, parametric amplifiers potentially provide wideband amplification in arbitrary regions of the spectrum. Numerical simulations are undertaken as a proof of principle for a picosecond 1064 nm pump and femtosecond 1025 nm signal. Guidelines for phase matching engineering are given, and limitations in spectral bandwidth and achievable pulse energy are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielus, and A. Piskarskas, "Multimillijoule chirped parametric amplification of few-cycle pulses," Opt. Lett. 30,567-569 (2005).
    [CrossRef] [PubMed]
  2. J. V. Rudd, R. J. Law, T. S. Luk, and S. M. Cameron, "High-power optical parametric chirped-pulse amplifier system with a 1.55 μm signal and a 1.064 μm pump," Opt. Lett. 30,1974-1976 (2005).
    [CrossRef] [PubMed]
  3. I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, N. Forget, and C. Le Blanc, "Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4," Opt. Lett. 30,1036-1038 (2005).
    [CrossRef] [PubMed]
  4. J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8,506-520 (2002).
    [CrossRef]
  5. A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, H. Maillotte, "Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers," Electron. Lett. 41,350-352 (2005).
    [CrossRef]
  6. G. K. L. Wong, A. Y. H. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Continuous-wave tunable optical parametric generation in a photonic-crystal fiber," J. Opt. Soc. Am. B 22,2505-2511 (2005).
    [CrossRef]
  7. G. P. Agrawal, "Nonlinear fiber optics, " second edition, p. 49 and p. 428 (Academic Press, 1995).
  8. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, "Broadband fiber optical parametric amplifiers," Opt. Lett. 21,573-575 (1996).
    [CrossRef] [PubMed]
  9. S. Fvrier, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, A. N. Guryanov, "Low Loss Large Mode Area Bragg Fibre," 31th European Conference on Optical Communication, Post Deadline paper PD Th4.4.3, Glasgow, United-Kingdom, 25-29 September 2005.
  10. J. Marcou, F. Brchet, Ph. Roy, "Design of weakly guiding Bragg fibres for chromatic dispersion shifting towards short wavelengths," Journal of Optics A: Pure and Applied Optics 3,S144-S153 (2001).
    [CrossRef]
  11. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8,538-547 (2002).
    [CrossRef]

2005 (5)

2002 (2)

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8,538-547 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8,506-520 (2002).
[CrossRef]

2001 (1)

J. Marcou, F. Brchet, Ph. Roy, "Design of weakly guiding Bragg fibres for chromatic dispersion shifting towards short wavelengths," Journal of Optics A: Pure and Applied Optics 3,S144-S153 (2001).
[CrossRef]

1996 (1)

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8,506-520 (2002).
[CrossRef]

Baltuska, A.

Barty, C. P. J.

Bayart, D.

A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, H. Maillotte, "Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers," Electron. Lett. 41,350-352 (2005).
[CrossRef]

Brchet, F.

J. Marcou, F. Brchet, Ph. Roy, "Design of weakly guiding Bragg fibres for chromatic dispersion shifting towards short wavelengths," Journal of Optics A: Pure and Applied Optics 3,S144-S153 (2001).
[CrossRef]

Brown, C. G.

Butkus, R.

Cameron, S. M.

Chen, A. Y. H.

Chiang, T.-K.

Chraplyvy, A. R.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8,538-547 (2002).
[CrossRef]

Danielus, R.

Durecu-Legrand, A.

A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, H. Maillotte, "Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers," Electron. Lett. 41,350-352 (2005).
[CrossRef]

Ebbers, C. A.

Forget, N.

Fuji, T.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8,506-520 (2002).
[CrossRef]

Harvey, J. D.

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8,506-520 (2002).
[CrossRef]

Ishii, N.

Joly, N. Y.

Jovanovic, I.

Kagi, N.

Kazovsky, L. G.

Knight, J. C.

Krausz, F.

Lantz, E.

A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, H. Maillotte, "Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers," Electron. Lett. 41,350-352 (2005).
[CrossRef]

Law, R. J.

Le Blanc, C.

Leonhardt, R.

Lie, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8,506-520 (2002).
[CrossRef]

Luk, T. S.

Maillotte, H.

A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, H. Maillotte, "Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers," Electron. Lett. 41,350-352 (2005).
[CrossRef]

Marcou, J.

J. Marcou, F. Brchet, Ph. Roy, "Design of weakly guiding Bragg fibres for chromatic dispersion shifting towards short wavelengths," Journal of Optics A: Pure and Applied Optics 3,S144-S153 (2001).
[CrossRef]

Marhic, M. E.

McKinstrie, C. J.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8,538-547 (2002).
[CrossRef]

Murdoch, S. G.

Mussot, A.

A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, H. Maillotte, "Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers," Electron. Lett. 41,350-352 (2005).
[CrossRef]

Piskarskas, A.

Radic, S.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8,538-547 (2002).
[CrossRef]

Roy, Ph.

J. Marcou, F. Brchet, Ph. Roy, "Design of weakly guiding Bragg fibres for chromatic dispersion shifting towards short wavelengths," Journal of Optics A: Pure and Applied Optics 3,S144-S153 (2001).
[CrossRef]

Rudd, J. V.

Russell, P. St. J.

Simonneau, C.

A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, H. Maillotte, "Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers," Electron. Lett. 41,350-352 (2005).
[CrossRef]

Smilgevicius, V.

Sylvestre, T.

A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, H. Maillotte, "Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers," Electron. Lett. 41,350-352 (2005).
[CrossRef]

Turi, L.

Veitas, G.

Wadsworth, W. J.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8,506-520 (2002).
[CrossRef]

Wong, G. K. L.

Yakovlev, V. S.

Electron. Lett. (1)

A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, H. Maillotte, "Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers," Electron. Lett. 41,350-352 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8,506-520 (2002).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8,538-547 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Journal of Optics A: Pure and Applied Optics (1)

J. Marcou, F. Brchet, Ph. Roy, "Design of weakly guiding Bragg fibres for chromatic dispersion shifting towards short wavelengths," Journal of Optics A: Pure and Applied Optics 3,S144-S153 (2001).
[CrossRef]

Opt. Lett. (4)

Other (2)

G. P. Agrawal, "Nonlinear fiber optics, " second edition, p. 49 and p. 428 (Academic Press, 1995).

S. Fvrier, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, A. N. Guryanov, "Low Loss Large Mode Area Bragg Fibre," 31th European Conference on Optical Communication, Post Deadline paper PD Th4.4.3, Glasgow, United-Kingdom, 25-29 September 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical spectra at the input (top) and at various locations along the fiber.

Fig. 2.
Fig. 2.

Power gain (solid curve) and FWHM spectral width as a function of propagation distance in the fiber.

Fig. 3.
Fig. 3.

Theoretical CW gain (solid line) and simulated fs-regime gain (crosses) of the fiber OPCPA described in section 2 as a function of wavelength. Theoretical CW gain (dashed line) corresponding to the bandwidth-optimized configuration described in section 3.

Fig. 4.
Fig. 4.

Input (solid line) and output (dashed line) spectra (top) and waveforms (bottom) of the large bandwidth fiber OPCPA.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u z j k = 2,3,4 j k β k k ! k u t k = ( 1 + j ω 0 t ) [ u z t t R ( t ' ) u z t t ´ 2 dt ´ ] ,
ϕ s = 0 L γ P s ( z ) dz = γ P eq L ,
E s E p < ϕ s ln ( G ) R sp G ϕ p ,
E s E p < 3 ϕ s R sp G ϕ p .

Metrics