Abstract

All-optical AND and NAND gates have been demonstrated in a Ti-diffused periodically poled LiNbO3 channel waveguide which has two second-harmonic phase-matching peaks by cascaded sum-frequency-generation/difference-frequency-generation (cSFG/DFG) and sum-frequency-generation (SFG) processes. The conversion efficiency of signal to idler (AND gate signal) was approximately 0 dB in cSFG/DFG process. In the second SFG process, more than 15 dB extinction ratio between signal and dropped signal (NAND gate signal) has been observed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "40 Git/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fibre," Electron. Lett. 41, 1074-1075 (2005).
    [CrossRef]
  2. X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded sigleport-coupled SOAs," Opt. Express 12, 361-366 (2004).
    [CrossRef] [PubMed]
  3. P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical AND gate," Opt. Commun. 219, 383-387 (2003).
    [CrossRef]
  4. S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
    [CrossRef]
  5. T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, "All-optical AND/NAND logic gates using semicondutor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
    [CrossRef]
  6. S. Pereira, P. Chak, and J. E. Sipe, "All-optical AND gate by use of a Kerr nonlinear microresonator structure," Opt. Lett. 28, 444-446 (2003).
    [CrossRef] [PubMed]
  7. K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, "Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN," IEEE Photon. Technol. Lett. 12, 654-656 (2000).
    [CrossRef]
  8. T. Suhara, and H. Ishizuki, "Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
    [CrossRef]
  9. H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
    [CrossRef]
  10. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5 μm band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupled structures," Opt. Lett. 23, 1004-1006 (1998).
    [CrossRef]
  11. Y. L. Lee, C. Jung, Y.-C. Noh, I.W. Choi, D.-K. Ko, J. Lee and H. Suche, "Wavelength selective single and dualchannel dropping in a periodically poled Ti:LiNbO3 channel waveguide," Opt. Express 12, 701-707 (2004).
    [CrossRef] [PubMed]
  12. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
    [CrossRef]
  13. Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Tunable all-optical wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide," OFC’03 Atlanta, GA/USA, March. pp. 767-768 (2003).
  14. R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
    [CrossRef]
  15. S. Helmfrid, and G. Arvidsson, "Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides," J. Opt. Soc. Am. B 8, 797-804 (1991).
    [CrossRef]
  16. M. H. Chou, K. R. Parameswaran, and M. M. Fejer, "Multi-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157-1159 (1999).
    [CrossRef]
  17. M. Asobe, O. Tadanage, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
    [CrossRef] [PubMed]
  18. Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
    [CrossRef]
  19. T. Suhara, and M. Fujimura, "Waveguide Nonlinear-Optic Devices," (Springer. 2003).
  20. D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
    [CrossRef]
  21. Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, "Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide," J. Korean Phys. Soc. 44, 267-270 (2004).

2005 (3)

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "40 Git/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fibre," Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

2004 (3)

2003 (5)

S. Pereira, P. Chak, and J. E. Sipe, "All-optical AND gate by use of a Kerr nonlinear microresonator structure," Opt. Lett. 28, 444-446 (2003).
[CrossRef] [PubMed]

M. Asobe, O. Tadanage, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
[CrossRef] [PubMed]

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical AND gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, "All-optical AND/NAND logic gates using semicondutor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

2001 (2)

T. Suhara, and H. Ishizuki, "Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
[CrossRef]

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

2000 (1)

K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, "Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN," IEEE Photon. Technol. Lett. 12, 654-656 (2000).
[CrossRef]

1999 (1)

1998 (1)

1991 (1)

1985 (1)

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Arbore, M. A.

Arvidsson, G.

Asobe, M.

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Byun, Y. T.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

Calhoun, L. C.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, "All-optical AND/NAND logic gates using semicondutor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Chak, P.

Choi, I.W.

Chou, M. H.

Esener, S.

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical AND gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

Fejer, M. M.

Fujimura, M.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, "Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN," IEEE Photon. Technol. Lett. 12, 654-656 (2000).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Gross, M.

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical AND gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

Grover, R.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, "All-optical AND/NAND logic gates using semicondutor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Grundkoetter, W.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "40 Git/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fibre," Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Hauden, J.

Helmfrid, S.

Ho, P.-T.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, "All-optical AND/NAND logic gates using semicondutor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Huang, D.

Ibrahim, T. A.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, "All-optical AND/NAND logic gates using semicondutor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Ishizuki, H.

T. Suhara, and H. Ishizuki, "Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
[CrossRef]

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

Jeon, Y. M.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

Jung, C.

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, "Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide," J. Korean Phys. Soc. 44, 267-270 (2004).

Y. L. Lee, C. Jung, Y.-C. Noh, I.W. Choi, D.-K. Ko, J. Lee and H. Suche, "Wavelength selective single and dualchannel dropping in a periodically poled Ti:LiNbO3 channel waveguide," Opt. Express 12, 701-707 (2004).
[CrossRef] [PubMed]

Kanakaraju, S.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, "All-optical AND/NAND logic gates using semicondutor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "40 Git/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fibre," Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Kim, J. H.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

Kim, S. H.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

Ko, D.-K.

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, "Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide," J. Korean Phys. Soc. 44, 267-270 (2004).

Y. L. Lee, C. Jung, Y.-C. Noh, I.W. Choi, D.-K. Ko, J. Lee and H. Suche, "Wavelength selective single and dualchannel dropping in a periodically poled Ti:LiNbO3 channel waveguide," Opt. Express 12, 701-707 (2004).
[CrossRef] [PubMed]

Kuo, L.-C.

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, "All-optical AND/NAND logic gates using semicondutor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Lee, J.

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, "Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide," J. Korean Phys. Soc. 44, 267-270 (2004).

Y. L. Lee, C. Jung, Y.-C. Noh, I.W. Choi, D.-K. Ko, J. Lee and H. Suche, "Wavelength selective single and dualchannel dropping in a periodically poled Ti:LiNbO3 channel waveguide," Opt. Express 12, 701-707 (2004).
[CrossRef] [PubMed]

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "40 Git/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fibre," Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

Lee, S.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

Lee, Y. L.

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, "Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide," J. Korean Phys. Soc. 44, 267-270 (2004).

Y. L. Lee, C. Jung, Y.-C. Noh, I.W. Choi, D.-K. Ko, J. Lee and H. Suche, "Wavelength selective single and dualchannel dropping in a periodically poled Ti:LiNbO3 channel waveguide," Opt. Express 12, 701-707 (2004).
[CrossRef] [PubMed]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

Liu, D.

Min, Y. H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

Miyazawa, H.

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "40 Git/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fibre," Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Nishida, Y.

Nishihara, H.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

Noh, Y.-C.

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, "Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide," J. Korean Phys. Soc. 44, 267-270 (2004).

Y. L. Lee, C. Jung, Y.-C. Noh, I.W. Choi, D.-K. Ko, J. Lee and H. Suche, "Wavelength selective single and dualchannel dropping in a periodically poled Ti:LiNbO3 channel waveguide," Opt. Express 12, 701-707 (2004).
[CrossRef] [PubMed]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "40 Git/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fibre," Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Parameswaran, K. P.

K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, "Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN," IEEE Photon. Technol. Lett. 12, 654-656 (2000).
[CrossRef]

Parameswaran, K. R.

Pereira, S.

Quiring, V.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Sanchez, M.

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical AND gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

Sipe, J. E.

Sohler, W.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Suche, H.

Y. L. Lee, C. Jung, Y.-C. Noh, I.W. Choi, D.-K. Ko, J. Lee and H. Suche, "Wavelength selective single and dualchannel dropping in a periodically poled Ti:LiNbO3 channel waveguide," Opt. Express 12, 701-707 (2004).
[CrossRef] [PubMed]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "40 Git/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fibre," Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Suhara, T.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

T. Suhara, and H. Ishizuki, "Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
[CrossRef]

Sun, J.

Suzuki, H.

Tadanage, O.

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Wang, Y.

Wen, P.

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical AND gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

Woo, D. H.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

Yu, B. G.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

Yu, B.-A.

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Yu, T. J.

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, "Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide," J. Korean Phys. Soc. 44, 267-270 (2004).

Zhang, X.

Appl. Phys. B (1)

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, "Reshaping of a second- harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Electron. Lett. (2)

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "40 Git/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fibre," Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. A. Ibrahim, R. Grover, L.-C. Kuo, S. Kanakaraju, L. C. Calhoun, and P.-T. Ho, "All-optical AND/NAND logic gates using semicondutor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

K. P. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, "Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN," IEEE Photon. Technol. Lett. 12, 654-656 (2000).
[CrossRef]

T. Suhara, and H. Ishizuki, "Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001).
[CrossRef]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Wavelength- and time- selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel wavegudies," IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, "Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide," J. Korean Phys. Soc. 44, 267-270 (2004).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Vertical-cavity optical AND gate," Opt. Commun. 219, 383-387 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, "Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device," Opt. Quantum Electron. 33, 953-961 (2001).
[CrossRef]

Other (2)

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundkoetter, V. Quiring, and W. Sohler, "Tunable all-optical wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide," OFC’03 Atlanta, GA/USA, March. pp. 767-768 (2003).

T. Suhara, and M. Fujimura, "Waveguide Nonlinear-Optic Devices," (Springer. 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SHG curve at room temperature (23 °C). The wavelengths of two peaks are 1530.11 nm and 1530.39 nm, respectively.

Fig. 2.
Fig. 2.

Phase-matching characteristics for cSFG/DFG and SFG processes. The colors indicate independent SFG (red) and cSFG/DFG (blue) processes, respectively.

Fig. 3.
Fig. 3.

Schematic diagram of the experimental setup; ECL: external cavity laser, DFB: distributed feedback laser, EDFA: erbium-doped fiber amplifier, OSA: optical spectrum analyzer, PC: polarization controller. ECL1, ECL2, DFB1 and DFB2 served as pump1, pump2, signal1 and signal2, respectively

Fig. 4.
Fig. 4.

The measured optical spectra at OSA1 (AND gate). (a) ECL1=0, DFB1=0. (b) ECL1=0, DFB1=1. (c) ECL1=1, DFB1=0. (d) ECL1=1, DFB1=1.

Fig. 5.
Fig. 5.

The measured optical spectra at OSA2 (NAND gate). (a) ECL1=0, DFB1=0. (b) ECL1=0, DFB1=1. (c) ECL1=1, DFB1=0. (d) ECL1=1, DFB1=1.

Tables (1)

Tables Icon

Table 1. Truth table for all-optical AND/NAND gates.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d A s 1 ( z ) dz = i ω s 1 ε o 2 C SFG 1 d ( z ) A SF 1 ( z ) A p 1 * ( z ) e β SFG 1 z ,
d A p 1 ( z ) dz = i ω p 1 ε o 2 C SFG 1 d ( z ) A SF 1 ( z ) A s 1 * ( z ) e β SFG 1 z ,
d A SF 1 ( z ) dz = i ω SF 1 ε o 2 C SFG 1 * d ( z ) A s 1 ( z ) A p 1 ( z ) e β SFG 1 z
+ i ω SF 1 ε 0 2 C DFG * d ( z ) A i ( z ) A p 2 ( z ) e β DFG z ,
d A p 2 ( z ) dz = i ω p 2 ε o 2 C DFG d ( z ) A S F 1 ( z ) A i * ( z ) e β DFG z ,
d A i ( z ) dz = i ω i ε o 2 C DFG d ( z ) A p 2 ( z ) A SF 1 ( z ) e β DFG z ,
C SFG 1 E SF 1 x y E s 1 * x y E p 1 * x y dxdy
C DFG E SF 1 x y E i * x y E p 2 * x y dxdy
d A s 2 ( z ) dz = i ω s 2 ε o 2 C SFG 2 d ( z ) A SF 2 ( z ) A i * ( z ) e β SFG 2 z ,
d A i ( z ) dz = i ω i ε o 2 C SFG 2 d ( z ) A SF 2 ( z ) A S 2 * ( z ) e β SFG 2 z ,
d A SF 2 ( z ) dz = i ω SF 2 ε o 2 C SFG 2 * d ( z ) A S 2 ( z ) A i ( z ) e β SFG 2 z ,

Metrics