Abstract

We describe a method that overcomes the observed saturation effect appearing in cross polarized wave (XPW) generation. The previously reported internal efficiencies for XPW generation are known to be limited to around 15% whatever the length of the nonlinear medium and/or the input intensity values are. At the opposite, the theoretical limit had been estimated to be close to 25%. Here we show that the saturation level of XPW generation efficiency can be drastically shifted up by using two thin nonlinear crystals put at a given distance one to the other. An internal efficiency of 30% is demonstrated experimentally using two BaF2 crystals.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, New York, 1998).
  2. M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, ‘‘Role of χ(3) anisotropy in the generation of squeezed light in semiconductors," Phys. Rev. B 53, 4479-4487 (1996).
    [CrossRef]
  3. N. Minkovski, S. M. Saltiel, G. I. Petrov, O. Albert and J. Etchepare, "Polarization rotation induced by cascaded third-order processes," Opt. Lett. 27, 2025-2027 (2002).
    [CrossRef]
  4. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, "Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration," J. Opt. Soc. Am. B 21, 1659-1664 (2004).
    [CrossRef]
  5. D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, "Nonlinear refractive coupling and vector solitons in anisotropic cubic media," J. Opt. Soc. Am. B 14, 869-879 (1997).
    [CrossRef]
  6. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. Saltiel, "10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation," Opt. Lett. 30, 920-922 (2005).
    [CrossRef] [PubMed]
  7. Cotel, A. Jullien, N. Forget, O. Albert, G. Chériaux, and C. L. Blanc, "Nonlinear temporal pulse cleaning of 1 μm optical parametric chirped-pulse amplifier," Appl. Phys. B 83,7-10 (2006)
    [CrossRef]
  8. G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
    [CrossRef]
  9. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, "Double chirped-pulse-amplification laser: a way to clean pulses temporally," Opt. Lett. 30, 923-925, (2005).
    [CrossRef] [PubMed]
  10. A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, "Non linear ellipse rotation in cubic crystals. Application for cross polarized wave generation," J. Opt. Soc. Am. B 22, 2635-2641 (2005).
    [CrossRef]
  11. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan and E. W. Van Stryland "Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals," Opt. Lett. 18, 194-196 (1993).
    [CrossRef] [PubMed]
  12. A. Jullien, "Génération d’impulsions laser ultra-brèves et ultra-intenses à contraste temporel élevé," Thesis, Laboratoire d’Optique Appliquée, ENSTA-Ecole Polytechnique, March-2006.
  13. 13. A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, "Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses," Appl. Phys. B 80, 61-66, (2005).Q2
    [CrossRef]
  14. O. Albert, J. Etchepare, A. Jullien, G. Chériaux, S. Saltiel and N. Minkovski, "Filtre non linéaire d’impulsions femtosecondes à contraste élevé," patent : FR/30.11.04/FRA 042694.
  15. A. Jullien, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, S. Kourtev and S. M. Saltiel, "Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme," submitted to Appl. Phys. B.
  16. S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, G. Chériaux, and J. Etchepare. "Two crystal scheme for efficient cross polarized wave generation in cubic crystals," Proceeding: LTL Plovdiv’2005, IV International symposium laser technologies and lasers, Plovdiv, Bulgaria; to be published.
  17. M. Sheik-Bahae, A. Said, D. Hagan, M. Soileau, and E. Van Stryland, "Nonlinear refraction and optical limiting in thick media," Opt. Eng. 30, 1228-1235 (1991).
    [CrossRef]
  18. M. M. Fejer, G. A Magel, DieterH , Jundt and Robert L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and Tolerances", IEEE J. of Quantum Electron. 28,2631 -2654 (1992).
    [CrossRef]
  19. D. Fluck and P. Günter, "Efficient generation of CW blue light by sum-frequency mixing of laser diodes in KNbO3, " Opt.Commun. 136, 257-260 (1997).
    [CrossRef]
  20. R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, "High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals," Opt. Express 11, 1709-1713 (2003).
    [CrossRef] [PubMed]

2006

Cotel, A. Jullien, N. Forget, O. Albert, G. Chériaux, and C. L. Blanc, "Nonlinear temporal pulse cleaning of 1 μm optical parametric chirped-pulse amplifier," Appl. Phys. B 83,7-10 (2006)
[CrossRef]

2005

2004

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, "Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration," J. Opt. Soc. Am. B 21, 1659-1664 (2004).
[CrossRef]

2003

2002

1997

D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, "Nonlinear refractive coupling and vector solitons in anisotropic cubic media," J. Opt. Soc. Am. B 14, 869-879 (1997).
[CrossRef]

D. Fluck and P. Günter, "Efficient generation of CW blue light by sum-frequency mixing of laser diodes in KNbO3, " Opt.Commun. 136, 257-260 (1997).
[CrossRef]

1996

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, ‘‘Role of χ(3) anisotropy in the generation of squeezed light in semiconductors," Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

1993

1992

M. M. Fejer, G. A Magel, DieterH , Jundt and Robert L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and Tolerances", IEEE J. of Quantum Electron. 28,2631 -2654 (1992).
[CrossRef]

1991

M. Sheik-Bahae, A. Said, D. Hagan, M. Soileau, and E. Van Stryland, "Nonlinear refraction and optical limiting in thick media," Opt. Eng. 30, 1228-1235 (1991).
[CrossRef]

Aitchison, J. S.

Albert, O.

Arnold, J. M.

Audebert, P.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Aveline, D.

Chériaux, G.

Cotel,

Cotel, A. Jullien, N. Forget, O. Albert, G. Chériaux, and C. L. Blanc, "Nonlinear temporal pulse cleaning of 1 μm optical parametric chirped-pulse amplifier," Appl. Phys. B 83,7-10 (2006)
[CrossRef]

Dabbicco, M.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, ‘‘Role of χ(3) anisotropy in the generation of squeezed light in semiconductors," Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

DeSalvo, R.

Dieter, G. A

M. M. Fejer, G. A Magel, DieterH , Jundt and Robert L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and Tolerances", IEEE J. of Quantum Electron. 28,2631 -2654 (1992).
[CrossRef]

Doumy, G.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Etchepare, J.

Fejer, M. M.

M. M. Fejer, G. A Magel, DieterH , Jundt and Robert L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and Tolerances", IEEE J. of Quantum Electron. 28,2631 -2654 (1992).
[CrossRef]

Fluck, D.

D. Fluck and P. Günter, "Efficient generation of CW blue light by sum-frequency mixing of laser diodes in KNbO3, " Opt.Commun. 136, 257-260 (1997).
[CrossRef]

Fox, A. M.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, ‘‘Role of χ(3) anisotropy in the generation of squeezed light in semiconductors," Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

Gauthier, J. C.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Geindre, J.-P.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Gobert, O.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Günter, P.

D. Fluck and P. Günter, "Efficient generation of CW blue light by sum-frequency mixing of laser diodes in KNbO3, " Opt.Commun. 136, 257-260 (1997).
[CrossRef]

Hagan, D.

M. Sheik-Bahae, A. Said, D. Hagan, M. Soileau, and E. Van Stryland, "Nonlinear refraction and optical limiting in thick media," Opt. Eng. 30, 1228-1235 (1991).
[CrossRef]

Hagan, D. J.

Hutchings, D. C.

Jullien,

Jullien, A.

Kalashnikov, M. P.

Kourtev, S.

Lundblad, N.

Magel, G. A

M. M. Fejer, G. A Magel, DieterH , Jundt and Robert L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and Tolerances", IEEE J. of Quantum Electron. 28,2631 -2654 (1992).
[CrossRef]

Maleki, L.

Martin, P.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Minkovski, N.

Perdrix, M.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Petrov, G. I.

Quere, F.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Risse, E.

Ryan, J. F.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, ‘‘Role of χ(3) anisotropy in the generation of squeezed light in semiconductors," Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

Said, A.

M. Sheik-Bahae, A. Said, D. Hagan, M. Soileau, and E. Van Stryland, "Nonlinear refraction and optical limiting in thick media," Opt. Eng. 30, 1228-1235 (1991).
[CrossRef]

Said, A. A.

Saltiel, S. M.

Sandner, W.

Schönnagel, H.

Sheik-Bahae, M.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan and E. W. Van Stryland "Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals," Opt. Lett. 18, 194-196 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. Said, D. Hagan, M. Soileau, and E. Van Stryland, "Nonlinear refraction and optical limiting in thick media," Opt. Eng. 30, 1228-1235 (1991).
[CrossRef]

Soileau, M.

M. Sheik-Bahae, A. Said, D. Hagan, M. Soileau, and E. Van Stryland, "Nonlinear refraction and optical limiting in thick media," Opt. Eng. 30, 1228-1235 (1991).
[CrossRef]

Thompson, R.

Tu, M.

Van Stryland, E.

M. Sheik-Bahae, A. Said, D. Hagan, M. Soileau, and E. Van Stryland, "Nonlinear refraction and optical limiting in thick media," Opt. Eng. 30, 1228-1235 (1991).
[CrossRef]

Van Stryland, E. W.

von Plessen, G.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, ‘‘Role of χ(3) anisotropy in the generation of squeezed light in semiconductors," Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

Wittmann, T.

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Appl. Phys. B

Cotel, A. Jullien, N. Forget, O. Albert, G. Chériaux, and C. L. Blanc, "Nonlinear temporal pulse cleaning of 1 μm optical parametric chirped-pulse amplifier," Appl. Phys. B 83,7-10 (2006)
[CrossRef]

13. A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, "Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses," Appl. Phys. B 80, 61-66, (2005).Q2
[CrossRef]

IEEE J. of Quantum Electron.

M. M. Fejer, G. A Magel, DieterH , Jundt and Robert L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and Tolerances", IEEE J. of Quantum Electron. 28,2631 -2654 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

M. Sheik-Bahae, A. Said, D. Hagan, M. Soileau, and E. Van Stryland, "Nonlinear refraction and optical limiting in thick media," Opt. Eng. 30, 1228-1235 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Opt.Commun.

D. Fluck and P. Günter, "Efficient generation of CW blue light by sum-frequency mixing of laser diodes in KNbO3, " Opt.Commun. 136, 257-260 (1997).
[CrossRef]

Phys. Rev. B

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, ‘‘Role of χ(3) anisotropy in the generation of squeezed light in semiconductors," Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

Phys. Rev. E

G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, "Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulse," Phys. Rev. E 69, 026402 (2004).Q1
[CrossRef]

Other

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, New York, 1998).

A. Jullien, "Génération d’impulsions laser ultra-brèves et ultra-intenses à contraste temporel élevé," Thesis, Laboratoire d’Optique Appliquée, ENSTA-Ecole Polytechnique, March-2006.

O. Albert, J. Etchepare, A. Jullien, G. Chériaux, S. Saltiel and N. Minkovski, "Filtre non linéaire d’impulsions femtosecondes à contraste élevé," patent : FR/30.11.04/FRA 042694.

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, S. Kourtev and S. M. Saltiel, "Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme," submitted to Appl. Phys. B.

S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, G. Chériaux, and J. Etchepare. "Two crystal scheme for efficient cross polarized wave generation in cubic crystals," Proceeding: LTL Plovdiv’2005, IV International symposium laser technologies and lasers, Plovdiv, Bulgaria; to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Theoretical prediction for the evolution of the XPW conversion efficiency as a function of parameter S = γ0|A 0|2 L for different β angles between the input direction of polarization plane and crystal [100] axis.

Fig. 2.
Fig. 2.

Schematic of the two crystals scheme for efficient cross polarized wave generation. Both crystals can be independently rotated around z axis for optimization of β 1 and β 2 angles and moved one from the other along z axis.

Fig. 3.
Fig. 3.

Experimental dependence of the XPW conversion efficiency as a function of input pulse energy for different BaF2 crystal lengths (a, b) and as a function of two crystals separation (c) for different focusing lenses and intensities; (b, c): experiments at 620 nm; (a): experiments at 800 nm; note that curves in (c) have been normalized to the efficiency at zero separation distance.

Fig. 4.
Fig. 4.

(a) Theoretical dependences for XPW generation efficiency as a function of two crystals separation for S = 1 and angles β 1 = β 2 = 22.5° and for S = 2 and angles β1 = β 2 = 18°. The curves are normalized to the theoretical efficiency at zero separation (12% and 33%, respectively). (b,c) Change of the beam sizes of the fundamental and XPW waves in the space between the two crystals: (b) S = 1; (c) S = 2. The positions of the waists and the positions of the second crystal for maximum efficiency are shown.

Fig. 5.
Fig. 5.

Optimal two crystal separation as a function of the confocal parameter b = 2πρo2/λ of the input fundamental beam at the plane of the first crystal for S = 1. The circle corresponds to the maximum efficiency point of the curve with the same S shown on fig. 4a.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dA dz = 1 A 2 A 2 ( B 2 B A 2 B * 2 A 2 B ) + 3 ( 2 B 2 A + B 2 A * )
dB dz = 1 B 2 B 2 ( A 2 A B 2 A * 2 B 2 A ) + 3 ( 2 A 2 B + A 2 A * ) ,
A r 0 = A 0 exp ( r 2 ρ 0 , A 2 ) and B r 0 = 0 ,
z 0,A,B = f NL,A,B [ 1+ ( λ f NL,A,B π ρ 0,A,B 2 ) 2 ] ; ρ 1,A,B 2 = ρ 0,A,B 2 [ 1+ ( π ρ 0,A,B 2 λ f NL,A,B ) 2 ]
A r d = A 1 ( y A ) 1 + ξ A 2 ( 0 ) 1 A ( d ) exp ( i Φ A ) exp ( i ξ A ( d ) 1 + ξ A 2 ( d ) r 2 ρ 1 , A 2 ) ,
B r d = B 1 ( y B ) 1 + ξ B 2 ( 0 ) 1 B ( d ) exp ( i Φ B ) exp ( i ξ B ( d ) 1 + ξ B 2 ( d ) r 2 ρ 1 , B 2 ) ,

Metrics