Abstract

Ridge waveguide 1.3 μm GaInNAs lasers were fabricated from high quality double quantum well material grown by molecular beam epitaxy. Short cavity (250 μm) lasers have low threshold currents and small temperature dependencies of threshold current and slope efficiency, with a characteristic temperature of the threshold current as high as 200 K. The temperature stability allows for uncooled 2.5 Gb/s operation up to temperatures as high as 110 °C with a constant modulation voltage and only the bias current adjusted for constant average output power. Under these conditions, an extinction ratio larger than 6 dB and a spectral rms-width smaller than 2 nm are obtained.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Uomi, M. Mukaikubo, H. Yamamoto, K. Nakahara, K. Motoda, K. Okamoto, Y. Sakuma, H. Singh, R. Washino, M. Aoki, and K. Uchida, "10 Gbit/s InGaAlAs uncooled directly modulated MQW-DFB lasers for SONET and Ethernet applications," Proc. Int. Conf. InP and Related Materials, 637-642 (2005).
  2. R. Paoletti, M. Agretsi, D. Bertone, L. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morello, C. Rigo, E. Riva, D. Soderstrom, S. Stano, P. Valenti, M. Vallone, and M. Meliga, "High reliability and high yield 1300 nm InGaAlAs directly modulated ridge waveguide Fabry-Perot lasers, operating at 10 Gb/s, up to 110 C, with constant current swing," Proc. Optical Fiber Conference, postdeadline paper, PDP15 (2005).
  3. M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
    [CrossRef]
  4. B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
    [CrossRef]
  5. D. Gollub, S. Moses, and A. Forchel, "Comparison of GaInNAs laser diodes based on two to five quantum wells," IEEE J. Quantum Electron. 40,337-343 (2004).
    [CrossRef]
  6. Y. Q. Wei, M. Sadeghi, S. M. Wang, P. Modh, and A. Larsson, "High performance 1.28 μm GaInNAs double quantum well lasers," Electron. Lett. 41,1328-1329 (2005).
    [CrossRef]
  7. S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, "Very low threshold current density 1.3 μm GaInNAs single quantum well lasers grown by molecular beam epitaxy," J. Crystal Growth 278,734-738 (2005).
    [CrossRef]
  8. N. Tansu and L. J. Mawst, "The role of hole-leakage in 1300-nm InGaAsN quantum well lasers," Appl. Phys. Lett. 82,1500 (2003).
    [CrossRef]
  9. R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. OReilly, A. Andreev, and H. Riechert, "A quantitative study of radiative, Auger, and defect related recombination processes in 1.3 μm GaInNAs-based quantum well lasers," IEEE J. Sel. Top. Quantum Electron. 8,801 (2002).
    [CrossRef]
  10. Y. Q. Wei, and J. S. Gustavsson, °A. Haglund, P. Modh, M. Sadeghi, S. M. Wang, and A. Larsson, "High frequency modulation and bandwidth limitations of GaInNAs double quantum well lasers," Appl. Phys. Lett. 88,051103 (2006).
    [CrossRef]

2006 (1)

Y. Q. Wei, and J. S. Gustavsson, °A. Haglund, P. Modh, M. Sadeghi, S. M. Wang, and A. Larsson, "High frequency modulation and bandwidth limitations of GaInNAs double quantum well lasers," Appl. Phys. Lett. 88,051103 (2006).
[CrossRef]

2005 (3)

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Y. Q. Wei, M. Sadeghi, S. M. Wang, P. Modh, and A. Larsson, "High performance 1.28 μm GaInNAs double quantum well lasers," Electron. Lett. 41,1328-1329 (2005).
[CrossRef]

S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, "Very low threshold current density 1.3 μm GaInNAs single quantum well lasers grown by molecular beam epitaxy," J. Crystal Growth 278,734-738 (2005).
[CrossRef]

2004 (1)

D. Gollub, S. Moses, and A. Forchel, "Comparison of GaInNAs laser diodes based on two to five quantum wells," IEEE J. Quantum Electron. 40,337-343 (2004).
[CrossRef]

2003 (1)

N. Tansu and L. J. Mawst, "The role of hole-leakage in 1300-nm InGaAsN quantum well lasers," Appl. Phys. Lett. 82,1500 (2003).
[CrossRef]

2002 (1)

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. OReilly, A. Andreev, and H. Riechert, "A quantitative study of radiative, Auger, and defect related recombination processes in 1.3 μm GaInNAs-based quantum well lasers," IEEE J. Sel. Top. Quantum Electron. 8,801 (2002).
[CrossRef]

1997 (1)

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

Adams, A. R.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. OReilly, A. Andreev, and H. Riechert, "A quantitative study of radiative, Auger, and defect related recombination processes in 1.3 μm GaInNAs-based quantum well lasers," IEEE J. Sel. Top. Quantum Electron. 8,801 (2002).
[CrossRef]

Dagens, B.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Fehse, R.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. OReilly, A. Andreev, and H. Riechert, "A quantitative study of radiative, Auger, and defect related recombination processes in 1.3 μm GaInNAs-based quantum well lasers," IEEE J. Sel. Top. Quantum Electron. 8,801 (2002).
[CrossRef]

Forchel, A.

D. Gollub, S. Moses, and A. Forchel, "Comparison of GaInNAs laser diodes based on two to five quantum wells," IEEE J. Quantum Electron. 40,337-343 (2004).
[CrossRef]

Gollub, D.

D. Gollub, S. Moses, and A. Forchel, "Comparison of GaInNAs laser diodes based on two to five quantum wells," IEEE J. Quantum Electron. 40,337-343 (2004).
[CrossRef]

Gustavsson, J. S.

Y. Q. Wei, and J. S. Gustavsson, °A. Haglund, P. Modh, M. Sadeghi, S. M. Wang, and A. Larsson, "High frequency modulation and bandwidth limitations of GaInNAs double quantum well lasers," Appl. Phys. Lett. 88,051103 (2006).
[CrossRef]

Harmand, J.-C.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Kitatani, T.

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

Kondow, M.

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

Larson, M. C.

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

Larsson, A.

S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, "Very low threshold current density 1.3 μm GaInNAs single quantum well lasers grown by molecular beam epitaxy," J. Crystal Growth 278,734-738 (2005).
[CrossRef]

Y. Q. Wei, M. Sadeghi, S. M. Wang, P. Modh, and A. Larsson, "High performance 1.28 μm GaInNAs double quantum well lasers," Electron. Lett. 41,1328-1329 (2005).
[CrossRef]

Le Gouezigou, O.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Make, D.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Martinez, A.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Mawst, L. J.

N. Tansu and L. J. Mawst, "The role of hole-leakage in 1300-nm InGaAsN quantum well lasers," Appl. Phys. Lett. 82,1500 (2003).
[CrossRef]

Merghem, K.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Modh, P.

Y. Q. Wei, M. Sadeghi, S. M. Wang, P. Modh, and A. Larsson, "High performance 1.28 μm GaInNAs double quantum well lasers," Electron. Lett. 41,1328-1329 (2005).
[CrossRef]

Moses, S.

D. Gollub, S. Moses, and A. Forchel, "Comparison of GaInNAs laser diodes based on two to five quantum wells," IEEE J. Quantum Electron. 40,337-343 (2004).
[CrossRef]

Nakahara, K.

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

Nakatsuka, S.

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

Okai, M.

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

Provost, J.-G.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Ramdane, A.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Sadeghi, M.

S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, "Very low threshold current density 1.3 μm GaInNAs single quantum well lasers grown by molecular beam epitaxy," J. Crystal Growth 278,734-738 (2005).
[CrossRef]

Y. Q. Wei, M. Sadeghi, S. M. Wang, P. Modh, and A. Larsson, "High performance 1.28 μm GaInNAs double quantum well lasers," Electron. Lett. 41,1328-1329 (2005).
[CrossRef]

Sallet, V.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Sweeney, S. J.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. OReilly, A. Andreev, and H. Riechert, "A quantitative study of radiative, Auger, and defect related recombination processes in 1.3 μm GaInNAs-based quantum well lasers," IEEE J. Sel. Top. Quantum Electron. 8,801 (2002).
[CrossRef]

Tansu, N.

N. Tansu and L. J. Mawst, "The role of hole-leakage in 1300-nm InGaAsN quantum well lasers," Appl. Phys. Lett. 82,1500 (2003).
[CrossRef]

Thedrez, B.

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

Tomic, S.

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. OReilly, A. Andreev, and H. Riechert, "A quantitative study of radiative, Auger, and defect related recombination processes in 1.3 μm GaInNAs-based quantum well lasers," IEEE J. Sel. Top. Quantum Electron. 8,801 (2002).
[CrossRef]

Uomi, K.

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

Wang, S. M.

S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, "Very low threshold current density 1.3 μm GaInNAs single quantum well lasers grown by molecular beam epitaxy," J. Crystal Growth 278,734-738 (2005).
[CrossRef]

Y. Q. Wei, M. Sadeghi, S. M. Wang, P. Modh, and A. Larsson, "High performance 1.28 μm GaInNAs double quantum well lasers," Electron. Lett. 41,1328-1329 (2005).
[CrossRef]

Wang, X. D.

S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, "Very low threshold current density 1.3 μm GaInNAs single quantum well lasers grown by molecular beam epitaxy," J. Crystal Growth 278,734-738 (2005).
[CrossRef]

Wei, Y. Q.

Y. Q. Wei, and J. S. Gustavsson, °A. Haglund, P. Modh, M. Sadeghi, S. M. Wang, and A. Larsson, "High frequency modulation and bandwidth limitations of GaInNAs double quantum well lasers," Appl. Phys. Lett. 88,051103 (2006).
[CrossRef]

Y. Q. Wei, M. Sadeghi, S. M. Wang, P. Modh, and A. Larsson, "High performance 1.28 μm GaInNAs double quantum well lasers," Electron. Lett. 41,1328-1329 (2005).
[CrossRef]

S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, "Very low threshold current density 1.3 μm GaInNAs single quantum well lasers grown by molecular beam epitaxy," J. Crystal Growth 278,734-738 (2005).
[CrossRef]

Yazawa, Y.

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

Zhao, Q. X.

S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, "Very low threshold current density 1.3 μm GaInNAs single quantum well lasers grown by molecular beam epitaxy," J. Crystal Growth 278,734-738 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

N. Tansu and L. J. Mawst, "The role of hole-leakage in 1300-nm InGaAsN quantum well lasers," Appl. Phys. Lett. 82,1500 (2003).
[CrossRef]

Y. Q. Wei, and J. S. Gustavsson, °A. Haglund, P. Modh, M. Sadeghi, S. M. Wang, and A. Larsson, "High frequency modulation and bandwidth limitations of GaInNAs double quantum well lasers," Appl. Phys. Lett. 88,051103 (2006).
[CrossRef]

Electron. Lett. (1)

Y. Q. Wei, M. Sadeghi, S. M. Wang, P. Modh, and A. Larsson, "High performance 1.28 μm GaInNAs double quantum well lasers," Electron. Lett. 41,1328-1329 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Gollub, S. Moses, and A. Forchel, "Comparison of GaInNAs laser diodes based on two to five quantum wells," IEEE J. Quantum Electron. 40,337-343 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. OReilly, A. Andreev, and H. Riechert, "A quantitative study of radiative, Auger, and defect related recombination processes in 1.3 μm GaInNAs-based quantum well lasers," IEEE J. Sel. Top. Quantum Electron. 8,801 (2002).
[CrossRef]

M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, "GaInNAs: a novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 3,719-730 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Dagens, A. Martinez, D. Make, O. Le Gouezigou, J.-G. Provost, V. Sallet, K. Merghem, J.-C. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10 Gb/s transmission with directly modulated GaInNAs-GaAs 1.35 μm laser for metropolitan applications," IEEE Photon. Technol. Lett. 17,971-973 (2005).
[CrossRef]

J. Crystal Growth (1)

S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, "Very low threshold current density 1.3 μm GaInNAs single quantum well lasers grown by molecular beam epitaxy," J. Crystal Growth 278,734-738 (2005).
[CrossRef]

Other (2)

K. Uomi, M. Mukaikubo, H. Yamamoto, K. Nakahara, K. Motoda, K. Okamoto, Y. Sakuma, H. Singh, R. Washino, M. Aoki, and K. Uchida, "10 Gbit/s InGaAlAs uncooled directly modulated MQW-DFB lasers for SONET and Ethernet applications," Proc. Int. Conf. InP and Related Materials, 637-642 (2005).

R. Paoletti, M. Agretsi, D. Bertone, L. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morello, C. Rigo, E. Riva, D. Soderstrom, S. Stano, P. Valenti, M. Vallone, and M. Meliga, "High reliability and high yield 1300 nm InGaAlAs directly modulated ridge waveguide Fabry-Perot lasers, operating at 10 Gb/s, up to 110 C, with constant current swing," Proc. Optical Fiber Conference, postdeadline paper, PDP15 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Output power and voltage as a function of current in the temperature range 25-110 °C for (a) a 250 μm and (b) a 500 μm long RWG laser.

Fig. 2.
Fig. 2.

Threshold current as a function of temperature for RWG lasers of different length. Values of the characteristic temperature below the critical temperature are also indicated.

Fig. 3.
Fig. 3.

Eye diagrams recorded at 25, 85, and 110 °C with a constant modulation voltage of 0.5 V and an extinction ratio of 6 dB. Corresponding bias currents are 21, 28, and 39 mA.

Fig. 4.
Fig. 4.

Eye diagrams recorded at 25, 85, and 110 °C with a constant modulation voltage of 0.5 V and a constant bias current of 35 mA. Corresponding extinction ratios are 2.2, 3.3, and 8.7 dB.

Fig. 5.
Fig. 5.

Eye diagrams recorded at 25 and 85 °C with a constant modulation voltage of 1.0 V and a constant bias current of 35 mA. Corresponding extinction ratios are 4.6 and 8.3 dB.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ = i = ( λ i λ 0 ) 2 p i i = p i , λ 0 = i = λ i p i i = p i

Metrics