Abstract

Previous works on photorefractive self-organizing laser cavities were about lasers that oscillate, prior the self-organization process occurs, on a set of axial modes sharing the same transverse structure. In a well-designed broad-area laser diode extended cavity, we theoretically and experimentally demonstrate that the insertion of a photorefractive crystal can also affect the transverse modal structure to force the laser, initially oscillating on several transverse modes, to oscillate on a single transverse and axial mode. This spatial self-organization process leads to an enhancement of the single mode operating range of the laser.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Camacho-Lopez, M. J. Damzen, "Self-starting Nd: YAG holographic laser oscillator with a thermal grating," Opt. Lett. 24, 753-755 (1999).
    [CrossRef]
  2. P. Sillard, A. Brignon, J. P. Huignard, "Loop resonators with self-pumped phase-conjugate mirrors in solid-state saturable amplifiers," J. Opt. Soc. Am. B 14, 2049-2058 (1997).
    [CrossRef]
  3. M. Horowitz, R. Daisy, B. Fisher, "Filtering behavior of a self-induced three-mirror cavity formed by intracavity wave mixing in a saturable absorber," Opt. Lett. 21, 299-301 (1996).
    [CrossRef] [PubMed]
  4. W. B. Whitten, J. M. Ramsey, "Mode selection in a continuous-wave dye laser with an intracavity photorefractive element," Opt. Lett. 12, 117-119 (1987).
    [CrossRef] [PubMed]
  5. N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, "Laser mode manipulation by intracavity dynamic holography: Application to mode selection," Appl. Phys. B 69, 155-157 (1999).
    [CrossRef]
  6. L. Meilhac, N. Dubreuil, G. Pauliat, G. Roosen, "Modeling of laser mode self-adapted filtering by photorefractive Fabry-Perot interferometers," Opt. Mater. 18, 37-40 (2001).
    [CrossRef]
  7. S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, "Laser diode made single-mode by a self-adaptive photorefractive filter," Opt. Commun. 208, 183-189 (2002).
    [CrossRef]
  8. A. Godard, G. Pauliat, G. Roosen, E. Ducloux, "Relaxation of the single-mode emission conditions in extended-cavity semiconductor lasers with a self-organizing photorefractive filter," Appl. Opt. 43, 3543-3547 (2004).
    [CrossRef] [PubMed]
  9. J. M Verdiell, R. Frey, "A broad-area mode-coupling model for multiple-stripe semiconductor lasers," IEEE J. Quantum Electron. 26, 270-279 (1990).
    [CrossRef]
  10. A. Yariv, Quantum electronics (Wiley, 1989), Chap. 19.
  11. A. E. Siegman, Lasers (Mill Valley: University Science Books, 1986).
  12. G. P. Agrawal, "Fast-Fourier-transform based beam-propagation model for stripe-geometry semiconductor lasers: Inclusion of axial effects," J. Appl. Phys. 56, 3100-3109 (1984).
    [CrossRef]
  13. V. Reboud, Cavités auto-organisables pour l’amélioration de la luminance des diodes laser de puissance, PhD thesis, (Université Paris 11, Orsay, France, 2004).

2004 (1)

2002 (1)

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, "Laser diode made single-mode by a self-adaptive photorefractive filter," Opt. Commun. 208, 183-189 (2002).
[CrossRef]

2001 (1)

L. Meilhac, N. Dubreuil, G. Pauliat, G. Roosen, "Modeling of laser mode self-adapted filtering by photorefractive Fabry-Perot interferometers," Opt. Mater. 18, 37-40 (2001).
[CrossRef]

1999 (2)

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, "Laser mode manipulation by intracavity dynamic holography: Application to mode selection," Appl. Phys. B 69, 155-157 (1999).
[CrossRef]

S. Camacho-Lopez, M. J. Damzen, "Self-starting Nd: YAG holographic laser oscillator with a thermal grating," Opt. Lett. 24, 753-755 (1999).
[CrossRef]

1997 (1)

1996 (1)

1990 (1)

J. M Verdiell, R. Frey, "A broad-area mode-coupling model for multiple-stripe semiconductor lasers," IEEE J. Quantum Electron. 26, 270-279 (1990).
[CrossRef]

1987 (1)

1984 (1)

G. P. Agrawal, "Fast-Fourier-transform based beam-propagation model for stripe-geometry semiconductor lasers: Inclusion of axial effects," J. Appl. Phys. 56, 3100-3109 (1984).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, "Fast-Fourier-transform based beam-propagation model for stripe-geometry semiconductor lasers: Inclusion of axial effects," J. Appl. Phys. 56, 3100-3109 (1984).
[CrossRef]

Brignon, A.

Brun, A.

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, "Laser mode manipulation by intracavity dynamic holography: Application to mode selection," Appl. Phys. B 69, 155-157 (1999).
[CrossRef]

Camacho-Lopez, S.

Daisy, R.

Damzen, M. J.

Dubreuil, N.

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, "Laser diode made single-mode by a self-adaptive photorefractive filter," Opt. Commun. 208, 183-189 (2002).
[CrossRef]

L. Meilhac, N. Dubreuil, G. Pauliat, G. Roosen, "Modeling of laser mode self-adapted filtering by photorefractive Fabry-Perot interferometers," Opt. Mater. 18, 37-40 (2001).
[CrossRef]

Ducloux, E.

Fisher, B.

Frey, R.

J. M Verdiell, R. Frey, "A broad-area mode-coupling model for multiple-stripe semiconductor lasers," IEEE J. Quantum Electron. 26, 270-279 (1990).
[CrossRef]

Georges, P.

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, "Laser mode manipulation by intracavity dynamic holography: Application to mode selection," Appl. Phys. B 69, 155-157 (1999).
[CrossRef]

Godard, A.

Horowitz, M.

Huignard, J. P.

Huot, N.

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, "Laser mode manipulation by intracavity dynamic holography: Application to mode selection," Appl. Phys. B 69, 155-157 (1999).
[CrossRef]

Jonathan, J. M.

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, "Laser mode manipulation by intracavity dynamic holography: Application to mode selection," Appl. Phys. B 69, 155-157 (1999).
[CrossRef]

Maerten, S.

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, "Laser diode made single-mode by a self-adaptive photorefractive filter," Opt. Commun. 208, 183-189 (2002).
[CrossRef]

Meilhac, L.

L. Meilhac, N. Dubreuil, G. Pauliat, G. Roosen, "Modeling of laser mode self-adapted filtering by photorefractive Fabry-Perot interferometers," Opt. Mater. 18, 37-40 (2001).
[CrossRef]

Pauliat, G.

A. Godard, G. Pauliat, G. Roosen, E. Ducloux, "Relaxation of the single-mode emission conditions in extended-cavity semiconductor lasers with a self-organizing photorefractive filter," Appl. Opt. 43, 3543-3547 (2004).
[CrossRef] [PubMed]

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, "Laser diode made single-mode by a self-adaptive photorefractive filter," Opt. Commun. 208, 183-189 (2002).
[CrossRef]

L. Meilhac, N. Dubreuil, G. Pauliat, G. Roosen, "Modeling of laser mode self-adapted filtering by photorefractive Fabry-Perot interferometers," Opt. Mater. 18, 37-40 (2001).
[CrossRef]

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, "Laser mode manipulation by intracavity dynamic holography: Application to mode selection," Appl. Phys. B 69, 155-157 (1999).
[CrossRef]

Ramsey, J. M.

Roosen, G.

A. Godard, G. Pauliat, G. Roosen, E. Ducloux, "Relaxation of the single-mode emission conditions in extended-cavity semiconductor lasers with a self-organizing photorefractive filter," Appl. Opt. 43, 3543-3547 (2004).
[CrossRef] [PubMed]

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, "Laser diode made single-mode by a self-adaptive photorefractive filter," Opt. Commun. 208, 183-189 (2002).
[CrossRef]

L. Meilhac, N. Dubreuil, G. Pauliat, G. Roosen, "Modeling of laser mode self-adapted filtering by photorefractive Fabry-Perot interferometers," Opt. Mater. 18, 37-40 (2001).
[CrossRef]

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, "Laser mode manipulation by intracavity dynamic holography: Application to mode selection," Appl. Phys. B 69, 155-157 (1999).
[CrossRef]

Rytz, D.

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, "Laser diode made single-mode by a self-adaptive photorefractive filter," Opt. Commun. 208, 183-189 (2002).
[CrossRef]

Salva, T.

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, "Laser diode made single-mode by a self-adaptive photorefractive filter," Opt. Commun. 208, 183-189 (2002).
[CrossRef]

Sillard, P.

Verdiell, J. M

J. M Verdiell, R. Frey, "A broad-area mode-coupling model for multiple-stripe semiconductor lasers," IEEE J. Quantum Electron. 26, 270-279 (1990).
[CrossRef]

Whitten, W. B.

Appl. Opt. (1)

Appl. Phys. B (1)

N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, "Laser mode manipulation by intracavity dynamic holography: Application to mode selection," Appl. Phys. B 69, 155-157 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. M Verdiell, R. Frey, "A broad-area mode-coupling model for multiple-stripe semiconductor lasers," IEEE J. Quantum Electron. 26, 270-279 (1990).
[CrossRef]

J. Appl. Phys. (1)

G. P. Agrawal, "Fast-Fourier-transform based beam-propagation model for stripe-geometry semiconductor lasers: Inclusion of axial effects," J. Appl. Phys. 56, 3100-3109 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, and T. Salva, "Laser diode made single-mode by a self-adaptive photorefractive filter," Opt. Commun. 208, 183-189 (2002).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

L. Meilhac, N. Dubreuil, G. Pauliat, G. Roosen, "Modeling of laser mode self-adapted filtering by photorefractive Fabry-Perot interferometers," Opt. Mater. 18, 37-40 (2001).
[CrossRef]

Other (3)

A. Yariv, Quantum electronics (Wiley, 1989), Chap. 19.

A. E. Siegman, Lasers (Mill Valley: University Science Books, 1986).

V. Reboud, Cavités auto-organisables pour l’amélioration de la luminance des diodes laser de puissance, PhD thesis, (Université Paris 11, Orsay, France, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Photb orefractive extended imaging cavity BAL diode arrangement made of a intracavity photorefractive crystal and a distant plane mirror.

Fig. 2.
Fig. 2.

Normalized reflectivity for modes m = 1,n = 2,…5 of the system composed by plane output cavity mirror and a hologram recorded by m = 1.

Fig. 3.
Fig. 3.

Modulus of interference modulation ratio associated with the transverse modes m=1,2,3,4 plotted around z = 2f 1 .

Fig. 4.
Fig. 4.

Photorefractive extended imaging cavity broad area laser diode made of a 10 % distant plane mirror, an aspheric and a cylindrical lenses, and a BaTiO3:Co photorefractive crystal.

Fig. 5.
Fig. 5.

Spectrally resolved near-field intensity distribution with the extended imaging cavity for several injection currents: (a) I /Ith = 1.005 (3.5 mW), (b) I / Ith = 1.01 (5 mW), (c) I / Ith = 1.015 (6.6 mW), (d) I / Ith = 1.02 (8.1 mW).

Fig. 6.
Fig. 6.

Near-field and the far-field intensity distributions of emitted beam by the extended imaging cavity broad-area laser diode without the intra-cavity photorefractive crystal (a) at an output power of 3.5 mW and with the intra-cavity photorefractive crystal (b) at an output power of 33.7 mW.

Tables (1)

Tables Icon

Table 1. Performances of the emitted beam in the single mode operation obtained without and with an intracavity photorefractive crystal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ψ m ( x ) = 1 x 0 sin ( mπx 2 x 0 + 2 ) rect ( x 2 x 0 ) ,
M m x z = 2 Ψ + m * x z Ψ m x z Ψ + m x z Ψ + m * x z Ψ m x z · Ψ m * x z .
Ψ n d x z = ΓL 4 M m x z Ψ + n x z ,
r n = r + Ψ n d x z . Ψ n * x z dx Ψ n x z . Ψ n * x z dx

Metrics